Araştırma Makalesi
BibTex RIS Kaynak Göster

Multi-Objective optimization of a parabolic trough solar power plant integrated with an organic Rankine cycle: based on high pressure and working fluid mass flow rate

Yıl 2025, Cilt: 9 Sayı: 1, 1 - 11, 23.04.2025
https://doi.org/10.35860/iarej.1554883

Öz

The optimization of a parabolic trough solar power plant is conducted using a multi-objective optimization algorithm in this study. Initially, the design of the plant, planned to be built in Afyonkarahisar province, is developed. Thermodynamic and thermo-economic analyses are performed based on this design. Key variables significantly affecting the system's outputs are identified as the fluid flow rate used in the Organic Rankine Cycle (ORC) and the turbine inlet pressure. A parametric study is carried out for these variables. However, optimizing the system requires more than just these parameters. The system is optimized multi-objectively, considering all relevant variables. A graphical multi-objective optimization algorithm is applied in this process. For the base case values of a 30 kg/s flow rate and 3500 kPa turbine inlet pressure, the net energy production, exergy efficiency, and unit energy cost are 0.8443 MW, 2.32%, and 0.2230 $/kWh, respectively. After optimization, the best results are achieved at a flow rate of 42 kg/s and a pressure of 4000 kPa. For the optimized case, the net energy production, exergy efficiency, and unit energy cost improve to 1.228 MW, 3.37%, and 0.1781 $/kWh, respectively.

Kaynakça

  • 1. Teevan, C., Medinilla, A., & Sergejeff, K., The Green Deal in EU foreign and development policy, 2021. ECDPM Briefing Note, p. 131.
  • 2. Gharat, P. V., Bhalekar, S. S., Dalvi, V. H., Panse, S. V., Deshmukh, S. P., & Joshi, J. B., Chronological development of innovations in reflector systems of parabolic trough solar collector (PTC)-A review. Renewable and Sustainable Energy Reviews, 2021. 145: p. 111002.
  • 3. Ghazouani, M., Bouya, M., & Benaissa, M., Thermo-economic and exergy analysis and optimization of small PTC collectors for solar heat integration in industrial processes. Renewable Energy, 2020. 152: p. 984-998.
  • 4. Park, J., Kang, S., Kim, S., Cho, H. S., Heo, S., & Lee, J. H., Techno-economic analysis of solar powered green hydrogen system based on multi-objective optimization of economics and productivity. Energy Conversion and Management, 2024. 299: p. 117823.
  • 5. Liu, L., Zhai, R., Xu, Y., Hu, Y., Liu, S., & Yang, L., Comprehensive sustainability assessment and multi-objective optimization of a novel renewable energy driven multi-energy supply system. Applied Thermal Engineering, 2024. 236: p. 121461.
  • 6. Fu, L., Fan, J., Yuanchun, L., Yantao, T., & Yisong, D, Study and application of a constrained multi-objective optimization algorithm. In Proceedings of the IEEE International Vehicle Electronics Conference, 1999. (IVEC'99)(Cat. No. 99EX257) p. 305-307.
  • 7. Yilmaz, F., An innovative study on a geothermal based multigeneration plant with transcritical CO2 cycle: Thermodynamic evaluation and multi-objective optimization. Process Safety and Environmental Protection, 2024. 185: p. 127-142.
  • 8. Li, C., & Zhai, R., A novel solar tower assisted pulverized coal power system considering solar energy cascade utilization: Performance analysis and multi-objective optimization. Renewable Energy, 2024. 222:119891.
  • 9. Tian, Y., Cheng, R., Zhang, X., & Jin, Y., PlatEMO: A MATLAB platform for evolutionary multi-objective optimization [educational forum]. IEEE Computational Intelligence Magazine, 2017. 12(4): p. 73-87.
  • 10. Desai, N. B., & Bandyopadhyay, S., Optimization of concentrating solar thermal power plant based on parabolic trough collector. Journal of Cleaner Production, 2015. 89: p. 262-271.
  • 11. Babaelahi, M., Mofidipour, E., & Rafat, E., Combined Energy-Exergy-Control (CEEC) analysis and multi-objective optimization of parabolic trough solar collector powered steam power plant. Energy, 2020. 201: p. 117641.
  • 12. Colakoglu, M., & Durmayaz, A., Energy, exergy and environmental-based design and multiobjective optimization of a novel solar-driven multi-generation system. Energy Conversion and Management, 2021. 227: p. 113603.
  • 13. Georgousis, N., Lykas, P., Bellos, E., & Tzivanidis, C., Multi-objective optimization of a solar-driven polygeneration system based on CO2 working fluid. Energy Conversion and Management, 2022. 252: p. 115136.
  • 14. Modabber, H. V., & Manesh, M. H. K., Optimal exergetic, exergoeconomic and exergoenvironmental design of polygeneration system based on gas Turbine-Absorption Chiller-Solar parabolic trough collector units integrated with multi-effect desalination-thermal vapor compressor-reverse osmosis desalination systems. Renewable Energy, 2021. 165: p. 533-552.
  • 15. Esfahani, M. N., Aghdam, A. H., & Refahi, A., Energy, exergy, exergoeconomic, exergoenvironmental (4E) assesment, sensitivity analysis and multi-objective optimization of a PTC–tehran climate data case study. Journal of Cleaner Production, 2023. 415: p. 137821.
  • 16. Adun, H., Adedeji, M., Adebayo, V., Shefik, A., Bamisile, O., Kavaz, D., & Dagbasi, M., Multi-objective optimization and energy/exergy analysis of a ternary nanofluid based parabolic trough solar collector integrated with kalina cycle. Solar Energy Materials and Solar Cells, 2021. 231: p. 111322.
  • 17. Hocaoglu, F. O., & Serttas, F., A novel hybrid (Mycielski-Markov) model for hourly solar radiation forecasting. Renewable Energy, 2017. 108: p. 635-643.
  • 18. Guler, O. F., Sen, O., Yilmaz, C., & Kanoglu, M., Performance evaluation of a geothermal and solar-based multigeneration system and comparison with alternative case studies: Energy, exergy, and exergoeconomic aspects. Renewable Energy, 2022. 200: p. 1517-1532.
  • 19. Bellos, E., & Tzivanidis, C., A detailed exergetic analysis of parabolic trough collectors. Energy Conversion and Management, 2017. 149: p. 275-292.
  • 20. Behar, O., Khellaf, A., & Mohammedi, K., A novel parabolic trough solar collector model–Validation with experimental data and comparison to Engineering Equation Solver (EES). Energy Conversion and Management, 2015. 106: p 268-281.
  • 21. Ferraro, V., Imineo, F., & Marinelli, V., An improved model to evaluate thermodynamic solar plants with cylindrical parabolic collectors and air turbine engines in open Joule–Brayton cycle. Energy, 2013. 53: p. 323-331.
  • 22. Swinbank, W. C., Long‐wave radiation from clear skies. Quarterly Journal of the Royal Meteorological Society, 2013. 89(381): p. 339-348.
  • 23. Kakaç, S., Liu, H., & Pramuanjaroenkij, A., Heat exchangers: selection, rating, and thermal design. CRC press, 2012. p. 81-128.
  • 24. Bellos, E., Tzivanidis, C., & Antonopoulos, K. A., A detailed working fluid investigation for solar parabolic trough collectors. Applied Thermal Engineering, 2017. 114: p. 374-386.
  • 25. Sen, O., Guler, O. F., Yilmaz, C., & Kanoglu, M., Thermodynamic modeling and analysis of a solar and geothermal assisted multi-generation energy system. Energy Conversion and Management, 2021. 239: p. 114186.
  • 26. Bejan, A., Tsatsaronis, G., & Moran, M. J., Thermal design and optimization. 1995, USA: John Wiley & Sons.
  • 27. Miri, M., Tolj, I., & Barbir, F., Review of Proton Exchange Membrane Fuel Cell-Powered Systems for Stationary Applications Using Renewable Energy Sources. Energies, 2024. 17(15): p. 3814.
  • 28. Alkhaldi, S. A., & Prasad, A. K., Strategies for gas management in the PEM water electrolyzer anode. Journal of Power Sources, 2025. 626: p. 235747.
  • 29. Astriani, Y., Tushar, W., & Nadarajah, M., Optimal planning of renewable energy park for green hydrogen production using detailed cost and efficiency curves of PEM electrolyzer. International Journal of Hydrogen Energy, 2024. 79: p. 1331-1346.
  • 30. Larminie, J., & Dicks, A., Fuel cell systems explained (2nd ed.). 2003, England: John Wiley & Sons.
  • 31. Yılmaz, C., Cengiz, E., & Kahraman, H. T., A new evolutionary optimization algorithm with hybrid guidance mechanism for truck-multi drone delivery system. Expert Systems with Applications, 2024. 245: p. 123115.
  • 32. Şeker, M., Mutlu, İ., Aysal, F. E., Atli, I. S., Yavuz, I., & Ergün, Y. A., The ANN analysis and Taguchi method optimisation of the brake pad composition. Emerging Materials Research, 2021. 10(3): p. 314-320.
  • 33. Li, L., Liu, P., Li, Z., & Wang, X., A multi-objective optimization approach for selection of energy storage systems. Computers & Chemical Engineering, 2018. 115: p. 213-225.
Yıl 2025, Cilt: 9 Sayı: 1, 1 - 11, 23.04.2025
https://doi.org/10.35860/iarej.1554883

Öz

Kaynakça

  • 1. Teevan, C., Medinilla, A., & Sergejeff, K., The Green Deal in EU foreign and development policy, 2021. ECDPM Briefing Note, p. 131.
  • 2. Gharat, P. V., Bhalekar, S. S., Dalvi, V. H., Panse, S. V., Deshmukh, S. P., & Joshi, J. B., Chronological development of innovations in reflector systems of parabolic trough solar collector (PTC)-A review. Renewable and Sustainable Energy Reviews, 2021. 145: p. 111002.
  • 3. Ghazouani, M., Bouya, M., & Benaissa, M., Thermo-economic and exergy analysis and optimization of small PTC collectors for solar heat integration in industrial processes. Renewable Energy, 2020. 152: p. 984-998.
  • 4. Park, J., Kang, S., Kim, S., Cho, H. S., Heo, S., & Lee, J. H., Techno-economic analysis of solar powered green hydrogen system based on multi-objective optimization of economics and productivity. Energy Conversion and Management, 2024. 299: p. 117823.
  • 5. Liu, L., Zhai, R., Xu, Y., Hu, Y., Liu, S., & Yang, L., Comprehensive sustainability assessment and multi-objective optimization of a novel renewable energy driven multi-energy supply system. Applied Thermal Engineering, 2024. 236: p. 121461.
  • 6. Fu, L., Fan, J., Yuanchun, L., Yantao, T., & Yisong, D, Study and application of a constrained multi-objective optimization algorithm. In Proceedings of the IEEE International Vehicle Electronics Conference, 1999. (IVEC'99)(Cat. No. 99EX257) p. 305-307.
  • 7. Yilmaz, F., An innovative study on a geothermal based multigeneration plant with transcritical CO2 cycle: Thermodynamic evaluation and multi-objective optimization. Process Safety and Environmental Protection, 2024. 185: p. 127-142.
  • 8. Li, C., & Zhai, R., A novel solar tower assisted pulverized coal power system considering solar energy cascade utilization: Performance analysis and multi-objective optimization. Renewable Energy, 2024. 222:119891.
  • 9. Tian, Y., Cheng, R., Zhang, X., & Jin, Y., PlatEMO: A MATLAB platform for evolutionary multi-objective optimization [educational forum]. IEEE Computational Intelligence Magazine, 2017. 12(4): p. 73-87.
  • 10. Desai, N. B., & Bandyopadhyay, S., Optimization of concentrating solar thermal power plant based on parabolic trough collector. Journal of Cleaner Production, 2015. 89: p. 262-271.
  • 11. Babaelahi, M., Mofidipour, E., & Rafat, E., Combined Energy-Exergy-Control (CEEC) analysis and multi-objective optimization of parabolic trough solar collector powered steam power plant. Energy, 2020. 201: p. 117641.
  • 12. Colakoglu, M., & Durmayaz, A., Energy, exergy and environmental-based design and multiobjective optimization of a novel solar-driven multi-generation system. Energy Conversion and Management, 2021. 227: p. 113603.
  • 13. Georgousis, N., Lykas, P., Bellos, E., & Tzivanidis, C., Multi-objective optimization of a solar-driven polygeneration system based on CO2 working fluid. Energy Conversion and Management, 2022. 252: p. 115136.
  • 14. Modabber, H. V., & Manesh, M. H. K., Optimal exergetic, exergoeconomic and exergoenvironmental design of polygeneration system based on gas Turbine-Absorption Chiller-Solar parabolic trough collector units integrated with multi-effect desalination-thermal vapor compressor-reverse osmosis desalination systems. Renewable Energy, 2021. 165: p. 533-552.
  • 15. Esfahani, M. N., Aghdam, A. H., & Refahi, A., Energy, exergy, exergoeconomic, exergoenvironmental (4E) assesment, sensitivity analysis and multi-objective optimization of a PTC–tehran climate data case study. Journal of Cleaner Production, 2023. 415: p. 137821.
  • 16. Adun, H., Adedeji, M., Adebayo, V., Shefik, A., Bamisile, O., Kavaz, D., & Dagbasi, M., Multi-objective optimization and energy/exergy analysis of a ternary nanofluid based parabolic trough solar collector integrated with kalina cycle. Solar Energy Materials and Solar Cells, 2021. 231: p. 111322.
  • 17. Hocaoglu, F. O., & Serttas, F., A novel hybrid (Mycielski-Markov) model for hourly solar radiation forecasting. Renewable Energy, 2017. 108: p. 635-643.
  • 18. Guler, O. F., Sen, O., Yilmaz, C., & Kanoglu, M., Performance evaluation of a geothermal and solar-based multigeneration system and comparison with alternative case studies: Energy, exergy, and exergoeconomic aspects. Renewable Energy, 2022. 200: p. 1517-1532.
  • 19. Bellos, E., & Tzivanidis, C., A detailed exergetic analysis of parabolic trough collectors. Energy Conversion and Management, 2017. 149: p. 275-292.
  • 20. Behar, O., Khellaf, A., & Mohammedi, K., A novel parabolic trough solar collector model–Validation with experimental data and comparison to Engineering Equation Solver (EES). Energy Conversion and Management, 2015. 106: p 268-281.
  • 21. Ferraro, V., Imineo, F., & Marinelli, V., An improved model to evaluate thermodynamic solar plants with cylindrical parabolic collectors and air turbine engines in open Joule–Brayton cycle. Energy, 2013. 53: p. 323-331.
  • 22. Swinbank, W. C., Long‐wave radiation from clear skies. Quarterly Journal of the Royal Meteorological Society, 2013. 89(381): p. 339-348.
  • 23. Kakaç, S., Liu, H., & Pramuanjaroenkij, A., Heat exchangers: selection, rating, and thermal design. CRC press, 2012. p. 81-128.
  • 24. Bellos, E., Tzivanidis, C., & Antonopoulos, K. A., A detailed working fluid investigation for solar parabolic trough collectors. Applied Thermal Engineering, 2017. 114: p. 374-386.
  • 25. Sen, O., Guler, O. F., Yilmaz, C., & Kanoglu, M., Thermodynamic modeling and analysis of a solar and geothermal assisted multi-generation energy system. Energy Conversion and Management, 2021. 239: p. 114186.
  • 26. Bejan, A., Tsatsaronis, G., & Moran, M. J., Thermal design and optimization. 1995, USA: John Wiley & Sons.
  • 27. Miri, M., Tolj, I., & Barbir, F., Review of Proton Exchange Membrane Fuel Cell-Powered Systems for Stationary Applications Using Renewable Energy Sources. Energies, 2024. 17(15): p. 3814.
  • 28. Alkhaldi, S. A., & Prasad, A. K., Strategies for gas management in the PEM water electrolyzer anode. Journal of Power Sources, 2025. 626: p. 235747.
  • 29. Astriani, Y., Tushar, W., & Nadarajah, M., Optimal planning of renewable energy park for green hydrogen production using detailed cost and efficiency curves of PEM electrolyzer. International Journal of Hydrogen Energy, 2024. 79: p. 1331-1346.
  • 30. Larminie, J., & Dicks, A., Fuel cell systems explained (2nd ed.). 2003, England: John Wiley & Sons.
  • 31. Yılmaz, C., Cengiz, E., & Kahraman, H. T., A new evolutionary optimization algorithm with hybrid guidance mechanism for truck-multi drone delivery system. Expert Systems with Applications, 2024. 245: p. 123115.
  • 32. Şeker, M., Mutlu, İ., Aysal, F. E., Atli, I. S., Yavuz, I., & Ergün, Y. A., The ANN analysis and Taguchi method optimisation of the brake pad composition. Emerging Materials Research, 2021. 10(3): p. 314-320.
  • 33. Li, L., Liu, P., Li, Z., & Wang, X., A multi-objective optimization approach for selection of energy storage systems. Computers & Chemical Engineering, 2018. 115: p. 213-225.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Enerji Üretimi, Dönüşüm ve Depolama (Kimyasal ve Elektiksel hariç), Makine Mühendisliğinde Optimizasyon Teknikleri
Bölüm Research Articles
Yazarlar

Ömer Faruk Güler 0000-0002-3344-341X

Erken Görünüm Tarihi 29 Nisan 2025
Yayımlanma Tarihi 23 Nisan 2025
Gönderilme Tarihi 23 Eylül 2024
Kabul Tarihi 29 Ocak 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 9 Sayı: 1

Kaynak Göster

APA Güler, Ö. F. (2025). Multi-Objective optimization of a parabolic trough solar power plant integrated with an organic Rankine cycle: based on high pressure and working fluid mass flow rate. International Advanced Researches and Engineering Journal, 9(1), 1-11. https://doi.org/10.35860/iarej.1554883
AMA Güler ÖF. Multi-Objective optimization of a parabolic trough solar power plant integrated with an organic Rankine cycle: based on high pressure and working fluid mass flow rate. Int. Adv. Res. Eng. J. Nisan 2025;9(1):1-11. doi:10.35860/iarej.1554883
Chicago Güler, Ömer Faruk. “Multi-Objective Optimization of a Parabolic Trough Solar Power Plant Integrated With an Organic Rankine Cycle: Based on High Pressure and Working Fluid Mass Flow Rate”. International Advanced Researches and Engineering Journal 9, sy. 1 (Nisan 2025): 1-11. https://doi.org/10.35860/iarej.1554883.
EndNote Güler ÖF (01 Nisan 2025) Multi-Objective optimization of a parabolic trough solar power plant integrated with an organic Rankine cycle: based on high pressure and working fluid mass flow rate. International Advanced Researches and Engineering Journal 9 1 1–11.
IEEE Ö. F. Güler, “Multi-Objective optimization of a parabolic trough solar power plant integrated with an organic Rankine cycle: based on high pressure and working fluid mass flow rate”, Int. Adv. Res. Eng. J., c. 9, sy. 1, ss. 1–11, 2025, doi: 10.35860/iarej.1554883.
ISNAD Güler, Ömer Faruk. “Multi-Objective Optimization of a Parabolic Trough Solar Power Plant Integrated With an Organic Rankine Cycle: Based on High Pressure and Working Fluid Mass Flow Rate”. International Advanced Researches and Engineering Journal 9/1 (Nisan 2025), 1-11. https://doi.org/10.35860/iarej.1554883.
JAMA Güler ÖF. Multi-Objective optimization of a parabolic trough solar power plant integrated with an organic Rankine cycle: based on high pressure and working fluid mass flow rate. Int. Adv. Res. Eng. J. 2025;9:1–11.
MLA Güler, Ömer Faruk. “Multi-Objective Optimization of a Parabolic Trough Solar Power Plant Integrated With an Organic Rankine Cycle: Based on High Pressure and Working Fluid Mass Flow Rate”. International Advanced Researches and Engineering Journal, c. 9, sy. 1, 2025, ss. 1-11, doi:10.35860/iarej.1554883.
Vancouver Güler ÖF. Multi-Objective optimization of a parabolic trough solar power plant integrated with an organic Rankine cycle: based on high pressure and working fluid mass flow rate. Int. Adv. Res. Eng. J. 2025;9(1):1-11.



Creative Commons License

Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.