Araştırma Makalesi
BibTex RIS Kaynak Göster

ERZURUM BİYOLOJİK ATIKSU ARITMA TESİSİ (BAAT) İLAÇ KALINTILARININ TESBİTİ VE FOTO-OKSİDASYONLA ARITILABİLİRLİĞİNİN İNCELENMESİ

Yıl 2025, Cilt: 13 Sayı: 2, 494 - 508, 27.06.2025
https://doi.org/10.21923/jesd.1631767

Öz

Bu çalışmada atıksu arıtma tesislerinde geleneksel yöntemlerle arıtılamayan ve bu nedenle başta yüzey suları olmak üzere çeşitli çevresel bileşenlerde son yıllarda gittikçe artan konsantrasyonlarda rastlanan en önemli çevresel mikrokirleticilerden (ÇMK) biri olan ilaç kalıntılarının tesbiti için, Erzurum BAAT çıkış suyunda deşarj öncesi noktadan alınan arıtılmış atıksu numunesinde LC-MS/MS cihazı ile geniş bir kalıntı ilaç bileşikleri analizi yapılmıştır. Elde edilen sonuçlara göre; Erzurum BAAT’nde Alzheimer, Analjezik, Analjezik-Antipiretik, Anestezik, Hemoreolojik, Antibakteriyal, Antidepresan, Antiepileptik, Antihipertansif, Antihistaminik, Antikolinerjik ve Spazmalotik, Antipsikotik, Grip ilacı, Antihistaminik, Mide ilacı, Nöropatik ağrı tedavisi ve Uyku bozukluğu gruplarına ait olmak üzere 55 ilaç etken madde tespit edilmiştir. Erzurum BAAT çıkış atıksu numunelerinde tespit edilen en yüksek 5 ilaç etken madde sırasıyla; Analjezik gruptan Flurbiprofen, Anestezik gruptan Pentobarbital, Nöropatik ağrı tedavisi için Gabapentin, Aneljezik gruptan Etodolac ve son olarak Antiepileptik gruptan Phenobarbital olup arıtılmış atıksudaki konsantrasyonları sırasıyla; 1375,48 µg/L, 93,82 µg/L, 41,11 µg/L, 19,03 µg/L ve 15,39 µg/L olarak analiz edilmiştir. Ardında bu numneler 366 nm dalga boyunda UV-A lamba, 312 nm dalga boyunda UV-B lamba ve 254 nm dalga boyunda UV-C lamba ile bir saat boyunca doğrudan foto-oksidasyona tabi tutulmuştur. UV-A, UV-B ve UV-C ışık kaynağından en yüksek oksidasyon verimi UV-C ışıma ile elde edilmiş ve 30 dakikalık foto-oksidasyon sonunda en yüksek konsantasyona sahip ilaç etken maddelerin suda kalan konsantrasyonları 374,13 µg/L, 84,92 µg/L, 3,71 µg/L, 0 µg/L ve 5,23 µg/L olarak analiz edilmiştir. Ayrıca foto-oksidasyon prosesi sonrası bu bileşiklerin alıcı su ortamında yaratacağı ekotoksisite değerleri de çalışma kapsamında hesaplanmıştır. Tüm ilaç kalıntıları içerisinde Flurbiprofen’in foto-oksidasyon sonunda ekotoksikolojik risk değerlendirmesinin yüksek olduğu tespit edilmiştir.

Proje Numarası

TÜBİTAK 123Y445

Kaynakça

  • Achilleos, A., Hapeshi, E., Xekoukoulotakis, N. P., Mantzavinos, D., & Fatta-Kassinos, D. (2010). Factors affecting diclofenac decomposition in water by UV-A/TiO2 photocatalysis. Chemical Engineering Journal, 161(1-2), 53-59.
  • Abbasi, N. A., Shahid, S. U., Majid, M., & Tahir, A. (2022). Ecotoxicological risk assessment of environmental micropollutants. In Environmental micropollutants (pp. 331-337). Elsevier.
  • Afzaal, M., Mazhar, I., Rasheed, R., Sharif, F., Khan, W. U. D., Bashir, N., ... & Khan, A. (2022). Industrial chemicals as micropollutants in the environment. In Environmental Micropollutants (pp. 13-44). Elsevier.
  • Ahmed, T., Faridullah, & Kanwal, R. (2022). In Hazardous environmental micro-pollutants, health impacts and allied treatment technologies (pp. 21-36). Cham: Springer International Publishing.
  • Alhaddad, M., & El-Hout, S. I. (2023). Visible-light photooxidation of ciprofloxacin antibiotic contaminant over cobalt ferrite-modified BaSnO3 heterojunction. Surfaces and Interfaces, 42, 103301.
  • Aydın, S., Ulvi, A., & Aydın, M. E. Kentsel Atıksularda Bazı Antibiyotik (Metronidazole, Ornidazole) ve Antifungal (Fluconazole) Farmasötiklerin Varlığı ve Risk Değerlendirmesi. Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 6(2).
  • Backhaus, T., Karlsson, M., (2014). Screening level mixture risk assessment of pharmaceuticals in STP effluents. Water research 49:157-165.
  • Boxall, A. B., Rudd, M. A., Brooks, B. W., Caldwell, D. J., Choi, K., Hickmann, S., ... & Van Der Kraak, G. (2012). Pharmaceuticals and personal care products in the environment: what are the big questions?. Environmental health perspectives, 120(9), 1221-1229.
  • Bush, K. (1997). Antimicrobial agents. Current Opinion in Chemical Biology, 1(2), 169–175. https://doi.org/10.1016/S1367-5931(97)80006-3.
  • Chong, M. N., Jin, B., Chow, C. W., & Saint, C. (2010). Recent developments in photocatalytic water treatment technology: a review. Water research, 44(10), 2997-3027.
  • Czech, B., Jośko, I., & Oleszczuk, P. (2014). Ecotoxicological evaluation of selected pharmaceuticals to Vibrio fischeri and Daphnia magna before and after photooxidation process. Ecotoxicology and environmental safety, 104, 247-253.
  • Czech, B., & Buda, W. (2015). Photocatalytic treatment of pharmaceutical wastewater using new multiwall-carbon nanotubes/TiO2/SiO2 nanocomposites. Environmental research, 137, 176-184.
  • Eren, Z. (2018). Su kaynaklarındaki ilaç kalıntılarının ileri oksidasyon yöntemleri ile arıtılabilirliğinin incelenmesi. Academic Platform-Journal of Engineering and Science, 6(3), 153-163.
  • Eren, Z., O’Shea, K. 2019. Hydroxyl radical generation and partitioning in degradation of methylene blue and DEET by dual-frequency ultrasonic irradiation, Journal of Environmental Engineering, 145(10), 04019070.
  • Eren, Z. (2025). The determination of wide-range pharmaceuticals class in Erzurum biological wastewater treatment plant using liquid chromatography coupled to tandem mass spectrometry: occurrence, treatment efficiency, and environmental risk assessment. Environmental Toxicology and Chemistry, vgae009.
  • ESKİ, 2024. Atıksu Arıtma, https://www.eski.gov.tr/atiksu-aritma-tesisi, Erişim Tarihi: 1.08.2024
  • Esplugas, S., Bila, D. M., Krause, L. G. T., & Dezotti, M. (2007). Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents. Journal of hazardous materials, 149(3), 631-642.
  • Fent, K., Weston, A. A., & Caminada, D. (2006). Ecotoxicology of human pharmaceuticals. Aquatic toxicology, 76(2), 122-159.
  • Heberer, T. (2002). Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicology letters, 131(1-2), 5-17.
  • Jjemba, P. K. (2018). Pharma-ecology: the occurrence and fate of pharmaceuticals and personal care products in the environment. John Wiley & Sons.
  • Finckh S., Beckers L.M., Busch W. et al (2022). A risk based assessment approach for chemical mixtures from wastewater treatment plant effluents. Environment International 164:107234.
  • Gupta, A., Kumar, S., Bajpai, Y., Chaturvedi, K., Johri, P., Tiwari, R. K., ... & Trivedi, M. (2024). Pharmaceutically active micropollutants: origin, hazards and removal. Frontiers in Microbiology, 15, 1339469.
  • Gülcan, H. (2019). Antibiyotiklerin fotokimyasal ileri oksidasyon prosesleri ile giderimi. İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, İstanbul.
  • Kumar, M., Sridharan, S., Sawarkar, A. D., Shakeel, A., Anerao, P., Mannina, G., ... & Pandey, A. (2023). Current research trends on emerging contaminants pharmaceutical and personal care products (PPCPs): a comprehensive review. Science of The Total Environment, 859, 160031.
  • Kurt, A. (2018). Sentetik ve hastane atıksularından çeşitli antibiyotik bileşiklerinin ileri oksidasyon prosesleri ile gideriminin araştırılması, Fen Bilimleri Enstitüsü, Uludağ Üniversitesi Doktora Tezi, Bursa.
  • Luo, Y., Guo, W., Ngo, H. H., Nghiem, L. D., Hai, F. I., Zhang, J., ... & Wang, X. C. (2014). A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Science of the total environment, 473, 619-641.
  • Mark, G., Schuchman, M.N., Schuchman, H.P. and von Sonntag, C., 1990. A chemical actinometer for use in connection with UV treatment in drinking-water processing. Journal of Water SRT-Aqua 39, 309-313.
  • ME, Ministry of the Environment 2023. Phenytoin. Accessed 10 Sep 2023 https://www.env.go.jp/content/000130399.pdf
  • Mostafa, A., Shaaban, H., Alqarni, A., Al-Ansari, R., Alrashidi, A., Al-Sultan, F., ... & Aga, O. (2023). Multi-class determination of pharmaceuticals as emerging contaminants in wastewater from Eastern Province, Saudi Arabia using eco-friendly SPE-UHPLC-MS/MS: Occurrence, removal and environmental risk assessment. Microchemical Journal, 187, 108453.
  • Nguyen, M. K., Lin, C., Bui, X. T., Rakib, M. R. J., Nguyen, H. L., Truong, Q. M., ... & Idris, A. M. (2024). Occurrence and fate of pharmaceutical pollutants in wastewater: Insights on ecotoxicity, health risk, and state–of–the-art removal. Chemosphere, 141678.
  • Paz, Y. (2010). Application of TiO2 photocatalysis for air treatment: Patents’ overview. Applied Catalysis B: Environmental, 99(3-4), 448-460.Peake, B.M., Braund R., Tong A.Y.C., Tremblay LA (2016) Impact of pharmaceuticals on the environment. In: The life-cycle of pharmaceuticals in the environment. Woodhead Publisher, pp 109–152.
  • Pomiès, M., Choubert, J. M., Wisniewski, C., & Coquery, M. (2013). Modelling Of Micropollutant Removal in Biological Wastewater Treatments: A Review. Science of The Total Environment, 443, 733–748. https://doi.org/10.1016/J.SCITOTENV.2012.11.037
  • Qin, M., Yang, H., Chen, S., Xie, H., & Guan, J. (2012). Photochemical characteristics of diclofenac and its photodegradation of inclusion complexes with β-cyclodextrins. Quimica Nova, 35, 559-562.
  • Rivera-Utrilla, J., Sánchez-Polo, M., Ferro-García, M. Á., Prados-Joya, G., & Ocampo-Pérez, R. (2013). Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere, 93(7), 1268-1287.
  • Rizzo, L., Meric, S., Kassinos, D., Guida, M., Russo, F., & Belgiorno, V. (2009). Degradation of diclofenac by TiO2 photocatalysis: UV absorbance kinetics and process evaluation through a set of toxicity bioassays. Water research, 43(4), 979-988.
  • Sharma, V. K., Triantis, T. M., Antoniou, M. G., He, X., Pelaez, M., Han, C., ... & Dionysiou, D. D. 2012. “Destruction of microcystins by conventional and advanced oxidation processes: a review”, Separation and Purification Technology, 91, 3-17.
  • Srinivasulu, M., Chandra, M. S., Gooty, J. M., & Madhavi, A. (2022). Personal care products—fragrances, cosmetics, and sunscreens—in the environment. In Environmental Micropollutants (pp. 131-149). Elsevier.
  • Tekinay, A., 2017. Atıksularda Farmasötiklerin Araştırılması ve Çevresel Risk Değerlendirmesi, Necmettin Erbakan Üniversitesi Fen Bilimleri Enstitüsü Çevre Mühendisliği Anabilim Dalı, Doktora Tezi̇, Konya, Türkiye
  • Ternes, T. A. (1998). Occurrence of drugs in German sewage treatment plants and rivers. Water research, 32(11), 3245-3260.URL-1, 2024. Calculating exposure time needed to kill all viruses, https://www.look-int.com/, cess Date: 05.08.2024.
  • USEPA, 2024. The Impact of Pharmaceuticals Released to the Environment, https://www.epa.gov, Access Date: 10.07.2024.
  • Wennmalm, Å., & Gunnarsson, B. (2009). Pharmaceutical management through environmental product labeling in Sweden. Environment International, 35(5), 775-777.

THE DETERMINATION OF PHARMACEUTICALS AT THE BIOLOGICAL WASTEWATER TREATMENT PLANT OF ERZURUM CITY AND THE INVESTIGATION OF THEIR TREATABILITY BY PHOTO-OXIDATION

Yıl 2025, Cilt: 13 Sayı: 2, 494 - 508, 27.06.2025
https://doi.org/10.21923/jesd.1631767

Öz

In this study, a comprehensive analysis of residual pharmaceuticals was performed in the treated wastewater sample taken from the discharge point in Erzurum BAAT with LC-MS/MS, which are one of the most important environmental micropollutants (EMPs) that cannot be treated by conventional treatment methods and therefore are transferred into environmental components, especially in surface waters. According to the results obtained; 55 active pharmaceutical substances belonging to the Alzheimer, Analgesic, Analgesic-Antipyretic, Anesthetic, Hemorheological, Antibacterial, Antidepressant, Antiepileptic, Antihypertensive, Antihistamine, Anticholinergic and Spasmalotic, Antipsychotic, Influenza drug, Antihistamine, Stomach drug, Neuropathic pain treatment and Sleep disorder groups were detected in Erzurum BAAT. The highest 5 drug active substances detected in Erzurum WWTP effluent samples were Flurbiprofen from Analgesic group, Pentobarbital from Anesthetic group, Gabapentin for neuropathic pain treatment, Etodolac from Analgesic group and finally Phenobarbital from Antiepileptic group and their concentrations in treated wastewater samples were analyzed as 1375,48 µg/L, 93,82 µg/L, 41,11 µg/L, 19,03 µg/L and 15,39 µg/L, respectively. Then, these samples were subjected to direct photooxidation with UV-A lamp at 366 nm wavelength, UV-B lamp at 312 nm wavelength and UV-C lamp at 254 nm wavelength for one hour. Among UV-A, UV-B and UV-C light sources, the highest oxidation efficiency was obtained with UV-C irradiation and at the end of 30 min. photooxidation, the remaining concentrations of these active pharmaceutical compounds were analyzed as 374,13 µg/L, 84,92 µg/L, 3,71 µg/L, 0 µg/L and 5,23 µg/L, respectively. Ecotoxicological risk assessment of the receiving environment was also performed based on the remaining pharmaceutical concentrations. Ecotoxicological risk assessment of flurbiprofen as a result of photo-oxidation was determined as High Risk (HR) still.

Proje Numarası

TÜBİTAK 123Y445

Kaynakça

  • Achilleos, A., Hapeshi, E., Xekoukoulotakis, N. P., Mantzavinos, D., & Fatta-Kassinos, D. (2010). Factors affecting diclofenac decomposition in water by UV-A/TiO2 photocatalysis. Chemical Engineering Journal, 161(1-2), 53-59.
  • Abbasi, N. A., Shahid, S. U., Majid, M., & Tahir, A. (2022). Ecotoxicological risk assessment of environmental micropollutants. In Environmental micropollutants (pp. 331-337). Elsevier.
  • Afzaal, M., Mazhar, I., Rasheed, R., Sharif, F., Khan, W. U. D., Bashir, N., ... & Khan, A. (2022). Industrial chemicals as micropollutants in the environment. In Environmental Micropollutants (pp. 13-44). Elsevier.
  • Ahmed, T., Faridullah, & Kanwal, R. (2022). In Hazardous environmental micro-pollutants, health impacts and allied treatment technologies (pp. 21-36). Cham: Springer International Publishing.
  • Alhaddad, M., & El-Hout, S. I. (2023). Visible-light photooxidation of ciprofloxacin antibiotic contaminant over cobalt ferrite-modified BaSnO3 heterojunction. Surfaces and Interfaces, 42, 103301.
  • Aydın, S., Ulvi, A., & Aydın, M. E. Kentsel Atıksularda Bazı Antibiyotik (Metronidazole, Ornidazole) ve Antifungal (Fluconazole) Farmasötiklerin Varlığı ve Risk Değerlendirmesi. Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 6(2).
  • Backhaus, T., Karlsson, M., (2014). Screening level mixture risk assessment of pharmaceuticals in STP effluents. Water research 49:157-165.
  • Boxall, A. B., Rudd, M. A., Brooks, B. W., Caldwell, D. J., Choi, K., Hickmann, S., ... & Van Der Kraak, G. (2012). Pharmaceuticals and personal care products in the environment: what are the big questions?. Environmental health perspectives, 120(9), 1221-1229.
  • Bush, K. (1997). Antimicrobial agents. Current Opinion in Chemical Biology, 1(2), 169–175. https://doi.org/10.1016/S1367-5931(97)80006-3.
  • Chong, M. N., Jin, B., Chow, C. W., & Saint, C. (2010). Recent developments in photocatalytic water treatment technology: a review. Water research, 44(10), 2997-3027.
  • Czech, B., Jośko, I., & Oleszczuk, P. (2014). Ecotoxicological evaluation of selected pharmaceuticals to Vibrio fischeri and Daphnia magna before and after photooxidation process. Ecotoxicology and environmental safety, 104, 247-253.
  • Czech, B., & Buda, W. (2015). Photocatalytic treatment of pharmaceutical wastewater using new multiwall-carbon nanotubes/TiO2/SiO2 nanocomposites. Environmental research, 137, 176-184.
  • Eren, Z. (2018). Su kaynaklarındaki ilaç kalıntılarının ileri oksidasyon yöntemleri ile arıtılabilirliğinin incelenmesi. Academic Platform-Journal of Engineering and Science, 6(3), 153-163.
  • Eren, Z., O’Shea, K. 2019. Hydroxyl radical generation and partitioning in degradation of methylene blue and DEET by dual-frequency ultrasonic irradiation, Journal of Environmental Engineering, 145(10), 04019070.
  • Eren, Z. (2025). The determination of wide-range pharmaceuticals class in Erzurum biological wastewater treatment plant using liquid chromatography coupled to tandem mass spectrometry: occurrence, treatment efficiency, and environmental risk assessment. Environmental Toxicology and Chemistry, vgae009.
  • ESKİ, 2024. Atıksu Arıtma, https://www.eski.gov.tr/atiksu-aritma-tesisi, Erişim Tarihi: 1.08.2024
  • Esplugas, S., Bila, D. M., Krause, L. G. T., & Dezotti, M. (2007). Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents. Journal of hazardous materials, 149(3), 631-642.
  • Fent, K., Weston, A. A., & Caminada, D. (2006). Ecotoxicology of human pharmaceuticals. Aquatic toxicology, 76(2), 122-159.
  • Heberer, T. (2002). Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicology letters, 131(1-2), 5-17.
  • Jjemba, P. K. (2018). Pharma-ecology: the occurrence and fate of pharmaceuticals and personal care products in the environment. John Wiley & Sons.
  • Finckh S., Beckers L.M., Busch W. et al (2022). A risk based assessment approach for chemical mixtures from wastewater treatment plant effluents. Environment International 164:107234.
  • Gupta, A., Kumar, S., Bajpai, Y., Chaturvedi, K., Johri, P., Tiwari, R. K., ... & Trivedi, M. (2024). Pharmaceutically active micropollutants: origin, hazards and removal. Frontiers in Microbiology, 15, 1339469.
  • Gülcan, H. (2019). Antibiyotiklerin fotokimyasal ileri oksidasyon prosesleri ile giderimi. İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, İstanbul.
  • Kumar, M., Sridharan, S., Sawarkar, A. D., Shakeel, A., Anerao, P., Mannina, G., ... & Pandey, A. (2023). Current research trends on emerging contaminants pharmaceutical and personal care products (PPCPs): a comprehensive review. Science of The Total Environment, 859, 160031.
  • Kurt, A. (2018). Sentetik ve hastane atıksularından çeşitli antibiyotik bileşiklerinin ileri oksidasyon prosesleri ile gideriminin araştırılması, Fen Bilimleri Enstitüsü, Uludağ Üniversitesi Doktora Tezi, Bursa.
  • Luo, Y., Guo, W., Ngo, H. H., Nghiem, L. D., Hai, F. I., Zhang, J., ... & Wang, X. C. (2014). A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Science of the total environment, 473, 619-641.
  • Mark, G., Schuchman, M.N., Schuchman, H.P. and von Sonntag, C., 1990. A chemical actinometer for use in connection with UV treatment in drinking-water processing. Journal of Water SRT-Aqua 39, 309-313.
  • ME, Ministry of the Environment 2023. Phenytoin. Accessed 10 Sep 2023 https://www.env.go.jp/content/000130399.pdf
  • Mostafa, A., Shaaban, H., Alqarni, A., Al-Ansari, R., Alrashidi, A., Al-Sultan, F., ... & Aga, O. (2023). Multi-class determination of pharmaceuticals as emerging contaminants in wastewater from Eastern Province, Saudi Arabia using eco-friendly SPE-UHPLC-MS/MS: Occurrence, removal and environmental risk assessment. Microchemical Journal, 187, 108453.
  • Nguyen, M. K., Lin, C., Bui, X. T., Rakib, M. R. J., Nguyen, H. L., Truong, Q. M., ... & Idris, A. M. (2024). Occurrence and fate of pharmaceutical pollutants in wastewater: Insights on ecotoxicity, health risk, and state–of–the-art removal. Chemosphere, 141678.
  • Paz, Y. (2010). Application of TiO2 photocatalysis for air treatment: Patents’ overview. Applied Catalysis B: Environmental, 99(3-4), 448-460.Peake, B.M., Braund R., Tong A.Y.C., Tremblay LA (2016) Impact of pharmaceuticals on the environment. In: The life-cycle of pharmaceuticals in the environment. Woodhead Publisher, pp 109–152.
  • Pomiès, M., Choubert, J. M., Wisniewski, C., & Coquery, M. (2013). Modelling Of Micropollutant Removal in Biological Wastewater Treatments: A Review. Science of The Total Environment, 443, 733–748. https://doi.org/10.1016/J.SCITOTENV.2012.11.037
  • Qin, M., Yang, H., Chen, S., Xie, H., & Guan, J. (2012). Photochemical characteristics of diclofenac and its photodegradation of inclusion complexes with β-cyclodextrins. Quimica Nova, 35, 559-562.
  • Rivera-Utrilla, J., Sánchez-Polo, M., Ferro-García, M. Á., Prados-Joya, G., & Ocampo-Pérez, R. (2013). Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere, 93(7), 1268-1287.
  • Rizzo, L., Meric, S., Kassinos, D., Guida, M., Russo, F., & Belgiorno, V. (2009). Degradation of diclofenac by TiO2 photocatalysis: UV absorbance kinetics and process evaluation through a set of toxicity bioassays. Water research, 43(4), 979-988.
  • Sharma, V. K., Triantis, T. M., Antoniou, M. G., He, X., Pelaez, M., Han, C., ... & Dionysiou, D. D. 2012. “Destruction of microcystins by conventional and advanced oxidation processes: a review”, Separation and Purification Technology, 91, 3-17.
  • Srinivasulu, M., Chandra, M. S., Gooty, J. M., & Madhavi, A. (2022). Personal care products—fragrances, cosmetics, and sunscreens—in the environment. In Environmental Micropollutants (pp. 131-149). Elsevier.
  • Tekinay, A., 2017. Atıksularda Farmasötiklerin Araştırılması ve Çevresel Risk Değerlendirmesi, Necmettin Erbakan Üniversitesi Fen Bilimleri Enstitüsü Çevre Mühendisliği Anabilim Dalı, Doktora Tezi̇, Konya, Türkiye
  • Ternes, T. A. (1998). Occurrence of drugs in German sewage treatment plants and rivers. Water research, 32(11), 3245-3260.URL-1, 2024. Calculating exposure time needed to kill all viruses, https://www.look-int.com/, cess Date: 05.08.2024.
  • USEPA, 2024. The Impact of Pharmaceuticals Released to the Environment, https://www.epa.gov, Access Date: 10.07.2024.
  • Wennmalm, Å., & Gunnarsson, B. (2009). Pharmaceutical management through environmental product labeling in Sweden. Environment International, 35(5), 775-777.
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Çevre Kirliliği ve Önlenmesi, Çevre Mühendisliği (Diğer)
Bölüm Araştırma Makaleleri \ Research Articles
Yazarlar

Zeynep Eren 0000-0003-1633-2547

Gökhan Yılmaz 0009-0004-0340-0808

Proje Numarası TÜBİTAK 123Y445
Yayımlanma Tarihi 27 Haziran 2025
Gönderilme Tarihi 3 Şubat 2025
Kabul Tarihi 12 Mayıs 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 13 Sayı: 2

Kaynak Göster

APA Eren, Z., & Yılmaz, G. (2025). ERZURUM BİYOLOJİK ATIKSU ARITMA TESİSİ (BAAT) İLAÇ KALINTILARININ TESBİTİ VE FOTO-OKSİDASYONLA ARITILABİLİRLİĞİNİN İNCELENMESİ. Mühendislik Bilimleri Ve Tasarım Dergisi, 13(2), 494-508. https://doi.org/10.21923/jesd.1631767