Araştırma Makalesi
BibTex RIS Kaynak Göster

Adaptation of the Scale of Student Engagement in Online Learning Environments into Turkish Language

Yıl 2025, Cilt: 12 Sayı: 2, 345 - 361

Öz

The development of technology and the widespread use of online education environments have emphasized the importance of engagement, which plays a critical role in an effective and efficient learning experience in online learning environments. Since there is no measurement tool in the literature to reveal different aspects of engagement, a multidimensional concept that requires effort, motivation, belonging, and commitment beyond just being present in the lesson, a scale adaptation was made to fill this gap. In our study, we adapted the ‘Student Engagement in Online Learning Environments Scale’ (SEOLES) developed by Inder (2021), which examines participation with the dimensions of skill, emotional, cognitive, social, performance, and valuing the lesson, into Turkish language. The adaptation process involved translation and retranslation through consultation with language and field experts, followed by pre-pilot and pilot applications. A total of 628 participants with at least one semester of distance education experience contributed to the study. Reliability analysis showed high scale reliability (α=.968) and scales' dimensions reliability values ranging from .814 to .919. Confirmatory factor analysis (CFA) indicated good fit indices (e.g., RMSEA=.063, CFI=.941, GFI=.880). Convergent validity was supported by CR values exceeding .7 and AVE values over .5 for all factors, while divergent validity was achieved with most HTMT values below 0.90. These results confirm the scale’s valid and reliable structure in Turkish. This adaptation provides a comprehensive tool for evaluating engagement in online learning, aiding higher education institutions in improving and restructuring their practices to enhance student engagement in distance education.

Etik Beyan

Institutional Review Board Statement: Ethical permission for this research was obtained from the Sakarya University of Applied Sciences ethics committee, whose decision was dated 12.05.2023 and numbered E-26428519-044-83947. Data Availability Statement: Data generated or analyzed during this study should be available from the authors on request. Conflict of Interest: Authors should declare that there is no conflict of interest among authors. Generative Artificial Intelligence Statement: Generative artificial intelligence (AI) tools were not used at any stage of the research or manuscript preparation.

Destekleyen Kurum

This study was supported by Ataturk University.

Proje Numarası

The Coordination Unit of Scientific Research Projects. Project ID: SDK-2024-14719.

Kaynakça

  • Abbasi, M., Ghamoushi, M., & Mohammadi, Z. Z., (2023). EFL learners’ engagement in online learning context: development and validation of potential measurement inventory. Universal Access in the Information Society, 1-15. https://doi.org/10.1007/s10209-023-00993-0
  • Agustina, E., & Cahyono, B.Y. (2017). Perceptions of Indonesian Teachers and Students on the Use of Quipper School as an Online Platform for Extended EFL Learning. Journal of Language Teaching and Research, 8, 794-800. https://doi.org/10.17507/JLTR.0804.20
  • Aldossary, K. (2021). Online Distance Learning For Translation Subjects: Tertiary Level Instructors’ And Students’ Perceptions In Saudi Arabia . Turkish Online Journal of Distance Education , 22 (3) , 95-109 . DOI: 10.17718/tojde.961821
  • Allen, I. E., Seaman, J., Poulin, R., & Straut, T. T. (2016). Online report card: Tracking online education in the United States. http://www.onlinelearningsurvey.com/reports/changingcourse.pdf Erişim tarihi: 10.04.2023
  • Anastasakis, M., Triantafyllou, G., & Petridis, K. (2021). Undergraduates’ barriers to online learning during the pandemic in Greece. Technology Knowledge and Learning, 28, 1383–1400. https://doi.org/10.1007/ s10758-021-09584-5.
  • Bedrule-Grigoruta, M. V., & Rusu, M. L. (2014). Considerations about e-Learning tools for adult education. Procedia-Social and Behavioral Sciences, 142, 749-754. doi: 10.1016/j.sbspro.2014.07.610
  • Bliss, C. A., & Lawrence, B. (2009). From posts to patterns: A metric to characterize discussion board activity in online courses. Journal of Asynchronous Learning Networks, 13(2), 15–32.
  • Büyüköztürk, Ş. (2002). Faktör analizi: Temel kavramlar ve ölçek geliştirmede kullanımı. Kuram ve Uygulamada Eğitim Yönetimi, 32(32), 470-483.
  • Büyüköztürk, Ş. & Çakmak, E.& Akgün, Ö.& Karadeniz, Ş. & Demirel, F. (2013). Bilimsel araştırma yöntemleri. Ankara: Pegem Akademi Yayınları
  • Brown, M., Hughes, H., Keppell, M., Hard, N., & Smith, L. (2015). Stories from students in their first semester of distance Learning. The International Review of Research in Open and Distance Learning, 16(4), 1–17
  • Brown, T. A. (2015). Confirmatory Factor Analysis for Applied Research (2nd ed.). The Guilford Press.
  • Brunton, J., Brown, M., Costello, E., & Farrell, O. (2018). Head start online: flexibility, transitions and student success. Educational Media International, 55(4). https://doi.org/10.1080/09523987.2018.1548783
  • Bryman, A. & Cramer, D. (2001). Quantitative data analysis with SPSS release 10 for Cole, D.A. (1987). Utility of confirmatory factor analysis in test validation research. Journal of Consulting and Clinical Psychology, 55, 1019-1031.
  • Burch, G. F., Heller, N. A., Burch, J. J., Freed, R., & Steed, S. A. (2015). Student engagement: Developing a conceptual framework and survey instrument. Journal of Education for Business, 90(4), 224-229. https://doi.org/10.1080/08832323.2015.1019821
  • Byrne, B. M. (2016). Structural Equation Modeling with AMOS: Basic Concepts, Applications, and Programming (3rd ed.). Routledge.
  • Cavanaugh, J., Jacquemin, S. J., & Junker, C. R. (2022). Variation in student perceptions of higher educa¬tion course quality and difficulty as a result of widespread implementation of online education dur¬ing the COVID-19 pandemic. Technology Knowledge and Learning, 1–16. https://doi.org/10.1007/ s10758-022-09596-9.
  • Derakhshan, A., Kruk, M., Mehdizadeh, M., & Pawlak, M. (2021). Boredom in online classes in the Iranian EFL context: Sources and solutions. System, 101, 102556. https://doi.org/10.1016/j.system.2021.102556
  • Dincer, A., Yeşilyurt, S., Noels, K.A., Vargas L, (2019). Self-determination and classroom engagement of EFL learners: a mixed-methods study of the self-system model of motivational development. SAGE Open 9(2), 1–15 (2019)
  • Dixson, M. D. (2015). Measuring student engagement in the online course: The Online Student Engagement scale (OSE). Online Learning, 19(4), n4. https://doi.org/10.24059/olj.v19i4.561
  • Ergün, E., & Koçak Usluel, Y. (2015). The Turkish adaptation of student’s engagements scale in online learning environment: A study of validity and reliability. Educational Technology Theory and Practice, 5(1), 20-33.
  • Farrell, O., & Brunton, J. (2020). A balancing act: A window into online student engagement experiences. International Journal of Educational Technology in Higher Education, 17(1), 1– 19. https://doi. org/10.1186/s41239-020-00199-x.
  • Fornell, C., & Larcker, D. F. (1981). Structural equation models with unobservable variables and measurement error: Algebra and statistics.
  • Francescucci, A., & Foster, M. (2013). The VIRI (Virtual, Interactive, Real-Time, Instructor-Led) Classroom: The impact of blended synchronous online courses on student performance, engagement, and satisfaction. Canadian Journal of Higher Education, 43(3), 78–91. https:// doi. org/ 10. 47678/ cjhe. v43i3. 184676
  • Getenet, S., Haeusler, C., Redmond, P., Cantle, R., & Crouch, V. (2024). First-year Preservice Teachers’ Understanding of Digital Technologies and Their Digital Literacy, Efficacy, Attitude, and Online Learning Engagement: Implication for Course Design. Technology, Knowledge and Learning, 1-25. https://doi.org/10.1007/s10758-023-09724-z
  • Gold, A. H., Malhotra, A., & Segars, A. H. (2001). Knowledge management: An organizational capabilities perspective. Journal of Management Information Systems, 18(1), 185-214. https://doi.org/10.1080/07421222.2001.11045669
  • Gunuc, S., & Kuzu, A. (2015). Student engagement scale: Development, reliability and validity. Assessment and Evaluation in Higher Education, 40(4), 587–610. https:// doi. org/ 10. 1080/ 02602 938. 2014. 938019
  • Güvenç, H. (2015). Etkin Katilim Ölçeği Geliştirme Ve Uyarlama Çalişmasi. Ahi Evran Üniversitesi Kırşehir Eğitim Fakültesi Dergisi, 16(1), 255-267. https://dergipark.org.tr/tr/pub/kefad/issue/59451/854142
  • Hambleton, R. K. (2005). Issues, Designs and Technical Guidelines for Adapting Tests Into Multiple Languages and Cultures. In R. K. Hambleton, P. F. Merenda and C. D. Spielberger (Eds.). Adapting Psychological and Educational Tests for Cross-Cultural Assessment. NJ: Lawrence Erlbaum.
  • Handelsman, M. M., Briggs, W. L., Sullivan, N., & Towler, A. (2005). A measure of college student course engagement. The Journal of Educational Research, 98(3), 184-192. https://doi.org/10.3200/JOER.98.3.184-192
  • Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115-135. https://doi.org/10.1007/s11747-014-0403-8
  • Hooper, D., Coughlan, J., & Mullen, M. (2008). Evaluating model fit: a synthesis of the structural equation modelling literature. In 7th European Conference on research methodology for business and management studies (pp. 195-200).
  • Horton, W. (2000). Designing Web Based Training. New York: John Wiley & Sons.
  • Hrastinski, S. (2008). What is online learner participation? A literature review. Computers and Education, 51(4), 1755–1765. https://doi.org/10.1016/j. compedu.2008.05.005
  • Inder, S. (2022). Factors Influencing Student Engagement for Online Courses: A Confirmatory Factor Analysis. Contemporary Educational Technology, 14(1), ep336. https://doi.org/10.30935/cedtech/11373
  • Kahu, E. R., & Nelson, K. (2018). Student engagement in the educational interface: Understanding the mechanisms of student success. Higher Education Research & Development, 37(1), 58–71. https://doi.org/10.1080/07294360.2017.1344197
  • Khan, B.H. (1997). Web-Based Instruction. New Jersey: Educational Technology Publications Englewood Cliffs.
  • Kline, B. (2005). Principles and Practice of Structural Equation Modeling. Newyork: The Guilford Press. Koçak, Ö., & Göksu, İ. (2023). Engagement of higher education students in live online classes: Scale development and validation. TechTrends, 67(3), 534-549. https://doi.org/10.1007/s11528-023-00849-7
  • Leach, L., (2016) Enhancing student engagement in one institution, Journal of Further and Higher Education, 40:1, 23-47, DOI: 10.1080/0309877X.2013.869565
  • Lei, H.; Cui, Y.; Zhou,W. (2018). Relationships between student engagement and academic achievement: A meta-analysis. Self Identity, 46, 517–528
  • Li, M. (2022). Learning Behaviors and Cognitive Participation in Online-Offline Hybrid Learning Environment. International Journal of Emerging Technologies in Learning (iJET), 17(01), pp. 146–159. https://doi.org/10.3991/ijet.v17i01.28715
  • Mallman, M., & Lee, H. (2016). Stigmatised learners: Mature-age students negotiating university culture. British Journal of Sociology of Education, 37(5), 684–701. https://doi.org/10.1080/01425692.2014.973017
  • Matthews, D., Tan, L., & Edwards, D. (2017). Development of an online engagement scale 2017. Australian Council for Educational Research (ACER). Retrieved September 10, 2022, from https:// resea rch. acer. edu. au/ higher_ educa tion/ 56/
  • McMillan, J. H., & Schumacher, S. (2006). Evidence-based inquiry. Research in education, 6(1), 26-42. Meşe, C., & Dursun, Ö. Ö. (2019). Effectiveness of Gamification Elements in Blended Learning Environments. Turkish Online Journal of Distance Education, 20(3), 119- 142. doi:10.17718/tojde.601914
  • Meyer, D. K. & Turner, J. C. (2006). Re-conceptualizing emotion and motivation to learn in classroom contexts. Educational Psychology Review, 18(4), 377-390.
  • Munro, B. H. (2005). Statistical methods for health care research (Vol. 1). lippincott williams & wilkins. Paetsch, J., & Drechsel, B. (2021). Factors influencing pre-service teachers’ intention to use digital learning materials: A study conducted during the COVID-19 pandemic in Germany. Frontiers in Psychology, 12, 733830. https://doi.org/10.3389/fpsyg.2021.733830.
  • Peled, Y. (2021). Pre-service teacher’s self-perception of digital literacy: The case of Israel. Education and Information Technologies, 26(3), 2879–2896. https://doi.org/10.1007/s10639-020-10387- x.
  • Purinton, E. F., & Burke, M. M. (2019). Student Engagement and Fun: Evidence from the Field. Business Education Innovation Journal, 11(2).
  • Redmond, P., Abawi, L., Brown, A., Henderson, R., & Heffernan, A. (2018). An online engagement frame¬work for higher education. Online Learning Journal, 22(1), 183–204. https://doi.org/10.24059/olj. v22i1.1175.
  • Schermelleh-Engel, K., Moosbrugger, H., & Müller, H. (2003). Evaluating the fit of structural equation models: Tests of significance and descriptive goodness-of-fit measures. Methods of psychological research online, 8(2), 23-74.
  • Seçer, İ. (2015). Psikolojik test geliştirme ve uyarlama süreci: SPSS ve LISREL uygulamaları. Anı yayıncılık. Sever, M. (2014). Derse katılım envanterinin Türk kültürüne uyarlanması. Eğitim ve Bilim, 39(176). https://egitimvebilim.ted.org.tr/index.php/EB/article/view/3627
  • Simonson, M., Smaldino, S., & Zvacek, S. (2015). Teaching and learning at a distance: Foundations of distance education (6th ed.). Charlotte, North Carolina: Information Age Publishing, Inc.
  • Skinner, E. A., Kindermann, T. A. &Furrer, C. J. (2008). A motivational perspective on engagement and disaffection: Conceptualization and assessment of children’s behavioral and emotional participation in academic activities in the classroom. Educational and Psychological Measurement. 69(3), 493–525. https://doi.org/10.1177/0013164408323233
  • Sulla, F., Harrad, R., Tontodimamma, A., Limone, P., & Aquino, A. (2023). Italian validation of the online student engagement scale (OSE) in higher education. Behavioral Sciences, 13(4), 324.
  • Şimşek, Ö. F. (2007). Yapısal eşitlik modellemesine giriş:(temel ilkeler ve LISREL uygulamaları). Ekinoks. Tabachnick, B.G. & Fidel, L.S. (2007). Using multivariate statistics. MA: Allyn& Bacon, Inc
  • Teo, T. S. H., Srivastava, S. C., & Jiang, L. (2008). Trust and electronic government success: An empirical study. Journal of Management Information Systems, 25(3), 99-132. https://doi.org/10.2753/MIS0742-1222250303
  • Tunga, Y., & İnceoğlu, M. M. (2016). E-öğrenme ortamlarında oyunlaştırma yaklaşımı kullanımının öğrenenlerin motivasyon durumlarına katkısının incelenmesi. In 10th International Computer and Instructional Technologies Symposium, pp. 620-625.
  • Vytasek, J.M.; Patzak, A.; Winne, P.H. (2020). Analytics for student engagement. In Intelligent Systems Reference Library: Machine Learning Paradigms; Virvou, M., Alepis, E., Tsihrintzis, G., Jain, L., Eds.; Springer: Cham, Switzerland ; Volume 158, pp. 23–48.
  • Yıldırım, G., Sökmen, Y., Taş, Y., Dilekmen, M. (2018). Öğrenci Katılım Ölçeğinin Türkçeye Uyarlanması: Geçerlik ve Güvenirlik Çalışması. Trakya Üniversitesi Eğitim Fakültesi Dergisi, 8(1), 68-79. https://doi.org/10.24315/trkefd.364039
  • Yıldız, M. , Kayaduman, H. & Kurşun, E. (2021). The Use of Gamification Elements in Open and Distance Learning (ODL) Environments . Kırşehir Eğitim Fakültesi Dergisi, 22(3), 1389-1428. Retrieved from https://dergipark.org.tr/en/pub/kefad/issue/64975/836471
Yıl 2025, Cilt: 12 Sayı: 2, 345 - 361

Öz

Proje Numarası

The Coordination Unit of Scientific Research Projects. Project ID: SDK-2024-14719.

Kaynakça

  • Abbasi, M., Ghamoushi, M., & Mohammadi, Z. Z., (2023). EFL learners’ engagement in online learning context: development and validation of potential measurement inventory. Universal Access in the Information Society, 1-15. https://doi.org/10.1007/s10209-023-00993-0
  • Agustina, E., & Cahyono, B.Y. (2017). Perceptions of Indonesian Teachers and Students on the Use of Quipper School as an Online Platform for Extended EFL Learning. Journal of Language Teaching and Research, 8, 794-800. https://doi.org/10.17507/JLTR.0804.20
  • Aldossary, K. (2021). Online Distance Learning For Translation Subjects: Tertiary Level Instructors’ And Students’ Perceptions In Saudi Arabia . Turkish Online Journal of Distance Education , 22 (3) , 95-109 . DOI: 10.17718/tojde.961821
  • Allen, I. E., Seaman, J., Poulin, R., & Straut, T. T. (2016). Online report card: Tracking online education in the United States. http://www.onlinelearningsurvey.com/reports/changingcourse.pdf Erişim tarihi: 10.04.2023
  • Anastasakis, M., Triantafyllou, G., & Petridis, K. (2021). Undergraduates’ barriers to online learning during the pandemic in Greece. Technology Knowledge and Learning, 28, 1383–1400. https://doi.org/10.1007/ s10758-021-09584-5.
  • Bedrule-Grigoruta, M. V., & Rusu, M. L. (2014). Considerations about e-Learning tools for adult education. Procedia-Social and Behavioral Sciences, 142, 749-754. doi: 10.1016/j.sbspro.2014.07.610
  • Bliss, C. A., & Lawrence, B. (2009). From posts to patterns: A metric to characterize discussion board activity in online courses. Journal of Asynchronous Learning Networks, 13(2), 15–32.
  • Büyüköztürk, Ş. (2002). Faktör analizi: Temel kavramlar ve ölçek geliştirmede kullanımı. Kuram ve Uygulamada Eğitim Yönetimi, 32(32), 470-483.
  • Büyüköztürk, Ş. & Çakmak, E.& Akgün, Ö.& Karadeniz, Ş. & Demirel, F. (2013). Bilimsel araştırma yöntemleri. Ankara: Pegem Akademi Yayınları
  • Brown, M., Hughes, H., Keppell, M., Hard, N., & Smith, L. (2015). Stories from students in their first semester of distance Learning. The International Review of Research in Open and Distance Learning, 16(4), 1–17
  • Brown, T. A. (2015). Confirmatory Factor Analysis for Applied Research (2nd ed.). The Guilford Press.
  • Brunton, J., Brown, M., Costello, E., & Farrell, O. (2018). Head start online: flexibility, transitions and student success. Educational Media International, 55(4). https://doi.org/10.1080/09523987.2018.1548783
  • Bryman, A. & Cramer, D. (2001). Quantitative data analysis with SPSS release 10 for Cole, D.A. (1987). Utility of confirmatory factor analysis in test validation research. Journal of Consulting and Clinical Psychology, 55, 1019-1031.
  • Burch, G. F., Heller, N. A., Burch, J. J., Freed, R., & Steed, S. A. (2015). Student engagement: Developing a conceptual framework and survey instrument. Journal of Education for Business, 90(4), 224-229. https://doi.org/10.1080/08832323.2015.1019821
  • Byrne, B. M. (2016). Structural Equation Modeling with AMOS: Basic Concepts, Applications, and Programming (3rd ed.). Routledge.
  • Cavanaugh, J., Jacquemin, S. J., & Junker, C. R. (2022). Variation in student perceptions of higher educa¬tion course quality and difficulty as a result of widespread implementation of online education dur¬ing the COVID-19 pandemic. Technology Knowledge and Learning, 1–16. https://doi.org/10.1007/ s10758-022-09596-9.
  • Derakhshan, A., Kruk, M., Mehdizadeh, M., & Pawlak, M. (2021). Boredom in online classes in the Iranian EFL context: Sources and solutions. System, 101, 102556. https://doi.org/10.1016/j.system.2021.102556
  • Dincer, A., Yeşilyurt, S., Noels, K.A., Vargas L, (2019). Self-determination and classroom engagement of EFL learners: a mixed-methods study of the self-system model of motivational development. SAGE Open 9(2), 1–15 (2019)
  • Dixson, M. D. (2015). Measuring student engagement in the online course: The Online Student Engagement scale (OSE). Online Learning, 19(4), n4. https://doi.org/10.24059/olj.v19i4.561
  • Ergün, E., & Koçak Usluel, Y. (2015). The Turkish adaptation of student’s engagements scale in online learning environment: A study of validity and reliability. Educational Technology Theory and Practice, 5(1), 20-33.
  • Farrell, O., & Brunton, J. (2020). A balancing act: A window into online student engagement experiences. International Journal of Educational Technology in Higher Education, 17(1), 1– 19. https://doi. org/10.1186/s41239-020-00199-x.
  • Fornell, C., & Larcker, D. F. (1981). Structural equation models with unobservable variables and measurement error: Algebra and statistics.
  • Francescucci, A., & Foster, M. (2013). The VIRI (Virtual, Interactive, Real-Time, Instructor-Led) Classroom: The impact of blended synchronous online courses on student performance, engagement, and satisfaction. Canadian Journal of Higher Education, 43(3), 78–91. https:// doi. org/ 10. 47678/ cjhe. v43i3. 184676
  • Getenet, S., Haeusler, C., Redmond, P., Cantle, R., & Crouch, V. (2024). First-year Preservice Teachers’ Understanding of Digital Technologies and Their Digital Literacy, Efficacy, Attitude, and Online Learning Engagement: Implication for Course Design. Technology, Knowledge and Learning, 1-25. https://doi.org/10.1007/s10758-023-09724-z
  • Gold, A. H., Malhotra, A., & Segars, A. H. (2001). Knowledge management: An organizational capabilities perspective. Journal of Management Information Systems, 18(1), 185-214. https://doi.org/10.1080/07421222.2001.11045669
  • Gunuc, S., & Kuzu, A. (2015). Student engagement scale: Development, reliability and validity. Assessment and Evaluation in Higher Education, 40(4), 587–610. https:// doi. org/ 10. 1080/ 02602 938. 2014. 938019
  • Güvenç, H. (2015). Etkin Katilim Ölçeği Geliştirme Ve Uyarlama Çalişmasi. Ahi Evran Üniversitesi Kırşehir Eğitim Fakültesi Dergisi, 16(1), 255-267. https://dergipark.org.tr/tr/pub/kefad/issue/59451/854142
  • Hambleton, R. K. (2005). Issues, Designs and Technical Guidelines for Adapting Tests Into Multiple Languages and Cultures. In R. K. Hambleton, P. F. Merenda and C. D. Spielberger (Eds.). Adapting Psychological and Educational Tests for Cross-Cultural Assessment. NJ: Lawrence Erlbaum.
  • Handelsman, M. M., Briggs, W. L., Sullivan, N., & Towler, A. (2005). A measure of college student course engagement. The Journal of Educational Research, 98(3), 184-192. https://doi.org/10.3200/JOER.98.3.184-192
  • Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115-135. https://doi.org/10.1007/s11747-014-0403-8
  • Hooper, D., Coughlan, J., & Mullen, M. (2008). Evaluating model fit: a synthesis of the structural equation modelling literature. In 7th European Conference on research methodology for business and management studies (pp. 195-200).
  • Horton, W. (2000). Designing Web Based Training. New York: John Wiley & Sons.
  • Hrastinski, S. (2008). What is online learner participation? A literature review. Computers and Education, 51(4), 1755–1765. https://doi.org/10.1016/j. compedu.2008.05.005
  • Inder, S. (2022). Factors Influencing Student Engagement for Online Courses: A Confirmatory Factor Analysis. Contemporary Educational Technology, 14(1), ep336. https://doi.org/10.30935/cedtech/11373
  • Kahu, E. R., & Nelson, K. (2018). Student engagement in the educational interface: Understanding the mechanisms of student success. Higher Education Research & Development, 37(1), 58–71. https://doi.org/10.1080/07294360.2017.1344197
  • Khan, B.H. (1997). Web-Based Instruction. New Jersey: Educational Technology Publications Englewood Cliffs.
  • Kline, B. (2005). Principles and Practice of Structural Equation Modeling. Newyork: The Guilford Press. Koçak, Ö., & Göksu, İ. (2023). Engagement of higher education students in live online classes: Scale development and validation. TechTrends, 67(3), 534-549. https://doi.org/10.1007/s11528-023-00849-7
  • Leach, L., (2016) Enhancing student engagement in one institution, Journal of Further and Higher Education, 40:1, 23-47, DOI: 10.1080/0309877X.2013.869565
  • Lei, H.; Cui, Y.; Zhou,W. (2018). Relationships between student engagement and academic achievement: A meta-analysis. Self Identity, 46, 517–528
  • Li, M. (2022). Learning Behaviors and Cognitive Participation in Online-Offline Hybrid Learning Environment. International Journal of Emerging Technologies in Learning (iJET), 17(01), pp. 146–159. https://doi.org/10.3991/ijet.v17i01.28715
  • Mallman, M., & Lee, H. (2016). Stigmatised learners: Mature-age students negotiating university culture. British Journal of Sociology of Education, 37(5), 684–701. https://doi.org/10.1080/01425692.2014.973017
  • Matthews, D., Tan, L., & Edwards, D. (2017). Development of an online engagement scale 2017. Australian Council for Educational Research (ACER). Retrieved September 10, 2022, from https:// resea rch. acer. edu. au/ higher_ educa tion/ 56/
  • McMillan, J. H., & Schumacher, S. (2006). Evidence-based inquiry. Research in education, 6(1), 26-42. Meşe, C., & Dursun, Ö. Ö. (2019). Effectiveness of Gamification Elements in Blended Learning Environments. Turkish Online Journal of Distance Education, 20(3), 119- 142. doi:10.17718/tojde.601914
  • Meyer, D. K. & Turner, J. C. (2006). Re-conceptualizing emotion and motivation to learn in classroom contexts. Educational Psychology Review, 18(4), 377-390.
  • Munro, B. H. (2005). Statistical methods for health care research (Vol. 1). lippincott williams & wilkins. Paetsch, J., & Drechsel, B. (2021). Factors influencing pre-service teachers’ intention to use digital learning materials: A study conducted during the COVID-19 pandemic in Germany. Frontiers in Psychology, 12, 733830. https://doi.org/10.3389/fpsyg.2021.733830.
  • Peled, Y. (2021). Pre-service teacher’s self-perception of digital literacy: The case of Israel. Education and Information Technologies, 26(3), 2879–2896. https://doi.org/10.1007/s10639-020-10387- x.
  • Purinton, E. F., & Burke, M. M. (2019). Student Engagement and Fun: Evidence from the Field. Business Education Innovation Journal, 11(2).
  • Redmond, P., Abawi, L., Brown, A., Henderson, R., & Heffernan, A. (2018). An online engagement frame¬work for higher education. Online Learning Journal, 22(1), 183–204. https://doi.org/10.24059/olj. v22i1.1175.
  • Schermelleh-Engel, K., Moosbrugger, H., & Müller, H. (2003). Evaluating the fit of structural equation models: Tests of significance and descriptive goodness-of-fit measures. Methods of psychological research online, 8(2), 23-74.
  • Seçer, İ. (2015). Psikolojik test geliştirme ve uyarlama süreci: SPSS ve LISREL uygulamaları. Anı yayıncılık. Sever, M. (2014). Derse katılım envanterinin Türk kültürüne uyarlanması. Eğitim ve Bilim, 39(176). https://egitimvebilim.ted.org.tr/index.php/EB/article/view/3627
  • Simonson, M., Smaldino, S., & Zvacek, S. (2015). Teaching and learning at a distance: Foundations of distance education (6th ed.). Charlotte, North Carolina: Information Age Publishing, Inc.
  • Skinner, E. A., Kindermann, T. A. &Furrer, C. J. (2008). A motivational perspective on engagement and disaffection: Conceptualization and assessment of children’s behavioral and emotional participation in academic activities in the classroom. Educational and Psychological Measurement. 69(3), 493–525. https://doi.org/10.1177/0013164408323233
  • Sulla, F., Harrad, R., Tontodimamma, A., Limone, P., & Aquino, A. (2023). Italian validation of the online student engagement scale (OSE) in higher education. Behavioral Sciences, 13(4), 324.
  • Şimşek, Ö. F. (2007). Yapısal eşitlik modellemesine giriş:(temel ilkeler ve LISREL uygulamaları). Ekinoks. Tabachnick, B.G. & Fidel, L.S. (2007). Using multivariate statistics. MA: Allyn& Bacon, Inc
  • Teo, T. S. H., Srivastava, S. C., & Jiang, L. (2008). Trust and electronic government success: An empirical study. Journal of Management Information Systems, 25(3), 99-132. https://doi.org/10.2753/MIS0742-1222250303
  • Tunga, Y., & İnceoğlu, M. M. (2016). E-öğrenme ortamlarında oyunlaştırma yaklaşımı kullanımının öğrenenlerin motivasyon durumlarına katkısının incelenmesi. In 10th International Computer and Instructional Technologies Symposium, pp. 620-625.
  • Vytasek, J.M.; Patzak, A.; Winne, P.H. (2020). Analytics for student engagement. In Intelligent Systems Reference Library: Machine Learning Paradigms; Virvou, M., Alepis, E., Tsihrintzis, G., Jain, L., Eds.; Springer: Cham, Switzerland ; Volume 158, pp. 23–48.
  • Yıldırım, G., Sökmen, Y., Taş, Y., Dilekmen, M. (2018). Öğrenci Katılım Ölçeğinin Türkçeye Uyarlanması: Geçerlik ve Güvenirlik Çalışması. Trakya Üniversitesi Eğitim Fakültesi Dergisi, 8(1), 68-79. https://doi.org/10.24315/trkefd.364039
  • Yıldız, M. , Kayaduman, H. & Kurşun, E. (2021). The Use of Gamification Elements in Open and Distance Learning (ODL) Environments . Kırşehir Eğitim Fakültesi Dergisi, 22(3), 1389-1428. Retrieved from https://dergipark.org.tr/en/pub/kefad/issue/64975/836471
Toplam 59 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kültürlerarası Ölçek Uyarlama
Bölüm Makaleler
Yazarlar

Mehmet Yıldız 0000-0002-9523-3805

Türkan Karakuş Yılmaz 0000-0002-5809-3962

Mehmet Barış Horzum 0000-0003-3567-0779

Proje Numarası The Coordination Unit of Scientific Research Projects. Project ID: SDK-2024-14719.
Erken Görünüm Tarihi 2 Ağustos 2025
Yayımlanma Tarihi
Gönderilme Tarihi 3 Aralık 2024
Kabul Tarihi 14 Mayıs 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 12 Sayı: 2

Kaynak Göster

APA Yıldız, M., Karakuş Yılmaz, T., & Horzum, M. B. (2025). Adaptation of the Scale of Student Engagement in Online Learning Environments into Turkish Language. E-Kafkas Journal of Educational Research, 12(2), 345-361.

19190       23681     19386        19387