Araştırma Makalesi
BibTex RIS Kaynak Göster

Çeşitli Bağlı Potansiyeller için Enerji Seviyeleri ve Soğurma Katsayıları: Kapsamlı Bir Analiz

Yıl 2025, Cilt: 6 Sayı: 1, 14 - 31, 30.06.2025
https://doi.org/10.53501/rteufemud.1446402

Öz

Bu makale, GaAs/AlGaAs sistemi üzerinde odaklanarak kuantum kuyu yapıları içindeki enerji seviyeleri ve soğurma katsayıları üzerine kapsamlı bir sayısal incelemeyi sunmaktadır. Rosen-Morse potansiyeli, Wood-Saxon potansiyeli, Pöschl-Teller potansiyeli, Razavy potansiyeli, ters kuadratik Hellmann potansiyeli, Kratzer-Fues potansiyeli ve Morse potansiyeli gibi çeşitli bağlı potansiyeller keşfedilmektedir. Etkin kütle ve zarf fonksiyonu yaklaşımlarını dikkate alarak, Schrödinger denklemi, sonlu farklar kullanılarak bir ayrık forma dönüştürülür. Analiz boyunca, etkin kütle oranı GaAs'ın karakteristik bir sabit değeri olarak tutulmuştur. Çalışma, kuyu parametrelerindeki değişikliklere karşı geçiş enerjileri ve emilim katsayılarının ince farklılıklar sergilediğini ortaya koymaktadır. Bu, yakın kızılötesi spektrumun alt sınırlarından uzak kızılötesi bölgenin ortalarına kadar uzanır. Farklı potansiyeller yelpazesinde bu fiziksel olayları kapsamlı bir şekilde inceleyerek, özellikle GaAs/AlGaAs sistemi bağlamında, bu araştırma kuantum kuyu yapılarının davranışı ve özellikleri hakkında değerli görüşler sunmaktadır.

Kaynakça

  • Ahn, D. and Chuang, S.-l. (1987). Calculation of linear and nonlinear intersubband optical absorptions in a quantum well model with an applied electric field. IEEE Journal of Quantum Electronics, 23(12), 2196-2204. https://doi.org/10.1109/JQE.1987.1073280
  • Atić, A., Vuković, N. and Radovanović, J. (2022.) Calculation of intersubband absorption in ZnO/ZnMgO asymmetric double quantum wells. Optical and Quantum Electronics, 54, 810. https://doi.org/10.1007/s11082-022-04170-0
  • Atić, A., Wang X., Vuković, N., Stanojević N., Demić A., Indjin D. and Radovanović J. (2024). Resonant Tunnelling and Intersubband Optical Properties of ZnO/ZnMgO Semiconductor Heterostructures: Impact of Doping and Layer Structure Variation. Materials, 17(4), 927. https://doi.org/10.3390/ma17040927
  • Aytekin, O., Turgut, S. and Tomak, M. (2012). Nonlinear optical properties of a Pöschl–Teller quantum well under electric and magnetic fields. Physica E: Low-dimensional Systems and Nanostructures, 44, 1612–1616. https://doi.org/10.1016/j.physe.2012.04.005
  • Bayrak, O., Boztosun, I. and Ciftci, H. (2006). Exact analytical solutions to the Kratzer potential by the asymptotic iteration method. International Journal of Quantum Chemistry, 107, 540-544. https://doi.org/10.1002/qua.21141
  • Cominotti, R. and Leymann, H. A. M. and Nespolo, J. and Manceau, J.-M. and Jeannin, M. and Colombelli, R. and Carusotto, I. (2023). Theory of coherent optical nonlinearities of intersubband transitions in semiconductor quantum wells. Physical Review B, 107(11), 115431. https://doi.org/10.1103/PhysRevB.107.115431
  • Costa Filho, R.N., Alencar, G., Skagerstam, B.S. and Andrade jr, J.S. (2013). Morse potential derived from first principles. Europhysics Letters, 101(1), 10009. https://doi.org/10.1209/0295-5075/101/10009
  • Dehyar, A., Rezaei, G. and Zamani, A. (2016). Electronic structure of a spherical quantum dot: Effects of the Kratzer potential, hydrogenic impurity, external electric and magnetic fields. Physica E: Low-dimensional Systems and Nanostructures, 84, 175-181. https://doi.org/10.1016/j.physe.2016.05.038
  • Duan, Y., Li, X., Chang, C., Zhao, Z. and Zhang, L. (2022). Hydrostatic pressure, temperature and Al-concentration effects on optical rectification of spherical quantum dots under inversely quadratic Hellmann potential. Optik, 254, 168596. https://doi.org/10.1016/j.ijleo.2022.168596
  • Duru, I.H. (1983). Morse-potential Green's function with path integrals. Physical Review D, 28, 2689. https://doi.org/10.1103/PhysRevD.28.2689.
  • Falaye, B.J. (2012). Energy spectrum for trigonometric Pöschl-Teller potential. Canadian Journal of Physics, 90(12), 1259-1265. https://doi.org/10.1139/p2012-103
  • Finkel, F., González-López, A. and Rodrígue, M.A. (1999). On the families of orthogonal polynomials associated to the Razavy potential. Journal of Physics A: Mathematical and General, 32(29), 6821-6835. https://doi.org/10.1088/0305-4470/32/39/308
  • Flügge, S. (1999). Practical Quantum Mechanics. Springer Berlin, ISBN: 978-3-540-65035-5, Heidelberg, Germany. https://doi.org/10.1007/978-3-642-61995-3
  • Fues, E. (1926). Das eigenschwingungsspektrum zweiatomiger moleküle in der undulationsmechanik. Annalen der Physik, 385, 367-396. https://doi.org/10.1002/andp.19263851204
  • Ghanbari, A. (2023). Studying third harmonic generation in spherical quantum dot under inversely quadratic Hellmann potential. Optical and Quantum Electronics, 55, 222. https://doi.org/10.1007/s11082-022-04513-x
  • Haghighatzadeh, A. and Attarzadeh, A. (2023). A comprehensive investigation on valence-band electronic structure and linear and nonlinear optical properties of a laser-driven GaAsSb-based Rosen-Morse quantum well. The European Physical Journal B, 96, 125. https://doi.org/10.1140/epjb/s10051-023-00592-1
  • Hamzavi, M. and Rajabi, A. (2011). Exact s-wave solution of the trigonometric pöschl-teller potential. International Journal of Quantum Chemistry, 112, 1592–1597. https://doi.org/10.1002/qua.23166
  • Harrison, P. (2005). Numerical Solutions. In: Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures (Eds. Harrison, P. and Valavanis, A), John Wiley and Sons Ltd. ISBN:9780470010792, Chichester, England. http://doi.org/10.1002/0470010827
  • Hellmann, H. (1936). Ein kombiniertes Näherungsverfahren zur Energieberechnung im Vielelektronenproblem. II. Acta Physicochim. USSR, 4, 225-244.
  • Kasapoglu, E., Sarı, H., Sökmen, I., Vinasco, J.A., Laroze, D. and Duque, C.A. (2021). Effects of intense laser field and position dependent effective mass in Razavy quantum wells and quantum dots. Physica E: Low-dimensional Systems and Nanostructures, 126, 114461. https://doi.org/10.1016/j.physe.2020.114461
  • Khordad, R. (2013). Confinement of an exciton in a quantum dot: Effect of modified Kratzer potential. Indian Journal of Physics, 87, 623–628. https://doi.org/10.1007/s12648-013-0281-9
  • Khordad, R. and Mirhosseini, B. (2014). Linear and nonlinear optical properties in spherical quantum dots: Rosen–Morse potential. Condenced-Matter Spectroscopy, 117(3), 434-440. https://doi.org/10.1134/S0030400X14090100
  • Khurgin, J.B. (2023). Basic Physics of Intersubband Radiative and Nonradiative Processes. In: Mid-Infrared and Terahertz Quantum Cascade Lasers (Eds. Botez, D. and Belkin, A.M.), Cambridge University Press. ISBN: 9781108552066. https://doi.org/10.1017/9781108552066
  • Kratzer, A. (1920). Die ultraroten Rotationsspektren der Halogenwasserstoffe. Zeitschrift für Physik, 3, 289–307. https://doi.org/10.1007/BF01327754
  • Máthé, L., Onyenegecha, C.P., Farcaş, A.-A., Pioraş-Ţimbolmaş, L.-M., Solaimani, M. and Hassanabadi, H. (2021). Linear and nonlinear optical properties in spherical quantum dots: Inversely quadratic Hellmann potential. Physics Letters A, 397, 127262. https://doi.org/10.1016/j.physleta.2021.127262
  • Morse, P.M. (1929). Diatomic Molecules According to the Wave Mechanics. II. Vibrational Levels. Physical Review, 34, 57-64. https://doi.org/10.1103/PhysRev.34.57
  • Nieto, M.M. and Simmons Jr., L.M. (1979). Eigenstates, coherent states, and uncertainty products for the Morse oscillator. Physical Review A, 19(2), 438-444. https://doi.org/10.1103/PhysRevA.19.438
  • Njoku, I.J., Onyenegecha, C.P., Okereke, C.J., Nwaokafor, P. and Abara, C.C. (2023). Relativistic energies and information entropy of the inversely quadratic Hellmann potential. Physics Open, 15, 100152. https://doi.org/10.1016/j.physo.2023.100152
  • Persichetti, L., Montanari, M., Ciano, C., Di Gaspare, L., Ortolani, M., Baldassarre, L., Zoellner, M., Mukherjee, S., Moutanabbir, O., Capellini, G., Virgilio, M., and De Seta, M. (2020). Intersubband Transition Engineering in the Conduction Band of Asymmetric Coupled Ge/SiGe Quantum Wells. Crystals, 10(3), 179. https://doi.org/10.3390/cryst10030179
  • Pöschl, G. and Teller, E. (1933). Bemerkungen zur Quantenmechanik des anharmonischen Oszillators. Zeitschrift für Physik, 83, 143–151. https://doi.org/10.1007/BF01331132
  • Razavy, M. (1980). An exactly soluble Schrödinger equation with a bistable potential. American Journal of Physics, 48(4), 285-288. https://doi.org/10.1119/1.12141
  • Restrepo, R.L., Morales, A.L., Akimov, V., Tulupenko, V., Kasapoglu, E., Unfan F. and Duque C.A. (2015). Intense laser field effects on a Woods–Saxon potential quantum well. Superlattices and Microstructures, 87, 143-148. https://doi.org/10.1016/j.spmi.2015.03.070
  • Rosen, N. and Morse, P.M. (1932). On the Vibrations of Polyatomic Molecules. Physical Review, 42, 210-217. https://doi.org/10.1103/PhysRev.42.210
  • Sakiroglu, S., Kasapoglu, E., Restrepo, R.L., Duque, C.A. and Sökmen, I. (2016). Intense laser field-induced nonlinear optical properties of Morse quantum well. Physica Status Solidi B, 254(4), 1600457. https://doi.org/10.1002/pssb.201600457
  • Salman Durmuslar, A., Turkoglu, A., Mora-Ramos, M.E. and Ungan, F. (2022). The non-resonant intense laser field effects on the binding energies and the nonlinear optical properties of a donor impurity in Rosen-Morse quantum well. Indian Journal of Physics, 96(12), 3485–3492. https://doi.org/10.1007/s12648-021-02251-6
  • Sayrac, M., Peter, A.J. and Ungan, F. (2022). Interband transitions and exciton binding energy in a Razavy quantum well: effects of external fields and Razavy potential parameters. The European Physical Journal Plus, 137, 840. https://doi.org/10.1140/epjp/s13360-022-03038-2
  • Sous, A.J. (2007). Eigenenergies for the Razavy potential V(x) = (ζ cosh 2x-M)2 using the asymptotic iteration method. Modern Physics Letters A, 22(22), 1677-1684. https://doi.org/10.1142/S0217732307021433
  • Turkoglu, A., Dakhlaoui, H., Durmuslar, A.S., Mora-Ramos, M.E. and Ungan, F. (2021). Nonlinear optical properties of a quantum well with inversely quadratic Hellman potential. The European Physical Journal B, 94, 111. https://doi.org/10.1140/epjb/s10051-021-00129-4
  • Ungan, F. and Bahar, M.K. (2019). Optical specifications of laser-induced Rosen-Morse quantum well. Optical Materials, 90, 231-237. https://doi.org/10.1016/j.optmat.2019.02.040
  • Ungan, F. and Bahar, M.K. (2020). The laser field controlling on the nonlinear optical specifications of the electric field-triggered Rosen-Morse quantum well. Physics Letters A, 384(19), 126400. https://doi.org/10.1016/j.physleta.2020.126400
  • Ungan, F., Bahar, M.K., Barseghyan, M.G., Pérez, L.M. and Laroze, D. (2021). Effect of intense laser and electric fields on nonlinear optical properties of cylindrical quantum dot with Morse potential. Optik, 236, 166621. https://doi.org/10.1016/j.ijleo.2021.166621
  • Ungan, F., Martínez-Orozco, J.C., Restrepo, R.L. and Mora-Ramos, M.E. (2019). The nonlinear optical properties of GaAs-based quantum wells with Kratzer–Fues confining potential: Role of applied static fields and non-resonant laser radiation. Optik, 185, 881-887. https://doi.org/10.1016/j.ijleo.2019.03.129
  • Ungan, F., Mora-Ramos, M.E., Yesilgul U., Sari, H. and Sökmen, I. (2019). Effect of applied external fields on the nonlinear optical properties of a Woods-Saxon potential quantum well. Physica E: Low-dimensional systems and nanostructures, 111, 167-171. https://doi.org/10.1016/j.physe.2019.03.015
  • van der Walt, S., Colbert, S.C., and Varoquaux, G. (2011). The numpy array: A structure for efficient numerical computation. Computing in Science and Engineering, 13(2), 22-30. https://doi.org/10.1109/MCSE.2011.37
  • Woods, R.D. and Saxon, D.S. (1954). Diffuse surface optical model for nucleon-nuclei scattering. Physical Review, 95, 577-578. https://doi.org/10.1103/PhysRev.95.577
  • Xie, W. (2009). A study of two confined electrons using the Woods–Saxon potential. Journal of Physics: Condensed Matter, 21(11), 115802. https://doi.org/10.1088/0953-8984/21/11/115802
  • Yıldırım, H. and Tomak, M. (2005). Nonlinear optical properties of a Pöschl-Teller quantum well. Physical Review B, 72, 115340. https://doi.org/10.1103/physrevb.72.115340
  • Yildirim, H. and Tomak, M. (2006). Intensity-dependent refractive index of a Pöschl-Teller quantum well. Journal of Applied Physics, 99, 093103. https://doi.org/10.1063/1.2194124

Energy Levels and Absorption Coefficients for Diverse Bounded Potentials: A Comprehensive Analysis

Yıl 2025, Cilt: 6 Sayı: 1, 14 - 31, 30.06.2025
https://doi.org/10.53501/rteufemud.1446402

Öz

This article presents a comprehensive numerical investigation into the energy levels and absorption coefficients within quantum well structures, with a particular focus on the GaAs/AlGaAs system. Various bounded potentials, including the Rosen-Morse potential, Wood-Saxon potential, Pöschl-Teller potential, Razavy potential, inversely quadratic Hellmann potential, Kratzer-Fues potential, and Morse potential, are explored. Employing the Schrödinger equation, with considerations for effective mass and envelope function approximations, a discrete formulation is attained through finite differences. Throughout the analysis, the effective mass ratio is upheld as a constant value characteristic of GaAs. The study reveals that transition energies and absorption coefficients exhibit subtle variations in response to alterations in well parameters, spanning from the lower bounds of the near-infrared spectrum to the midpoints of the far-infrared region. By comprehensively studying these phenomena across a spectrum of potentials, this research contributes valuable insights into the behavior and characteristics of quantum well structures, particularly within the context of the GaAs/AlGaAs system.

Kaynakça

  • Ahn, D. and Chuang, S.-l. (1987). Calculation of linear and nonlinear intersubband optical absorptions in a quantum well model with an applied electric field. IEEE Journal of Quantum Electronics, 23(12), 2196-2204. https://doi.org/10.1109/JQE.1987.1073280
  • Atić, A., Vuković, N. and Radovanović, J. (2022.) Calculation of intersubband absorption in ZnO/ZnMgO asymmetric double quantum wells. Optical and Quantum Electronics, 54, 810. https://doi.org/10.1007/s11082-022-04170-0
  • Atić, A., Wang X., Vuković, N., Stanojević N., Demić A., Indjin D. and Radovanović J. (2024). Resonant Tunnelling and Intersubband Optical Properties of ZnO/ZnMgO Semiconductor Heterostructures: Impact of Doping and Layer Structure Variation. Materials, 17(4), 927. https://doi.org/10.3390/ma17040927
  • Aytekin, O., Turgut, S. and Tomak, M. (2012). Nonlinear optical properties of a Pöschl–Teller quantum well under electric and magnetic fields. Physica E: Low-dimensional Systems and Nanostructures, 44, 1612–1616. https://doi.org/10.1016/j.physe.2012.04.005
  • Bayrak, O., Boztosun, I. and Ciftci, H. (2006). Exact analytical solutions to the Kratzer potential by the asymptotic iteration method. International Journal of Quantum Chemistry, 107, 540-544. https://doi.org/10.1002/qua.21141
  • Cominotti, R. and Leymann, H. A. M. and Nespolo, J. and Manceau, J.-M. and Jeannin, M. and Colombelli, R. and Carusotto, I. (2023). Theory of coherent optical nonlinearities of intersubband transitions in semiconductor quantum wells. Physical Review B, 107(11), 115431. https://doi.org/10.1103/PhysRevB.107.115431
  • Costa Filho, R.N., Alencar, G., Skagerstam, B.S. and Andrade jr, J.S. (2013). Morse potential derived from first principles. Europhysics Letters, 101(1), 10009. https://doi.org/10.1209/0295-5075/101/10009
  • Dehyar, A., Rezaei, G. and Zamani, A. (2016). Electronic structure of a spherical quantum dot: Effects of the Kratzer potential, hydrogenic impurity, external electric and magnetic fields. Physica E: Low-dimensional Systems and Nanostructures, 84, 175-181. https://doi.org/10.1016/j.physe.2016.05.038
  • Duan, Y., Li, X., Chang, C., Zhao, Z. and Zhang, L. (2022). Hydrostatic pressure, temperature and Al-concentration effects on optical rectification of spherical quantum dots under inversely quadratic Hellmann potential. Optik, 254, 168596. https://doi.org/10.1016/j.ijleo.2022.168596
  • Duru, I.H. (1983). Morse-potential Green's function with path integrals. Physical Review D, 28, 2689. https://doi.org/10.1103/PhysRevD.28.2689.
  • Falaye, B.J. (2012). Energy spectrum for trigonometric Pöschl-Teller potential. Canadian Journal of Physics, 90(12), 1259-1265. https://doi.org/10.1139/p2012-103
  • Finkel, F., González-López, A. and Rodrígue, M.A. (1999). On the families of orthogonal polynomials associated to the Razavy potential. Journal of Physics A: Mathematical and General, 32(29), 6821-6835. https://doi.org/10.1088/0305-4470/32/39/308
  • Flügge, S. (1999). Practical Quantum Mechanics. Springer Berlin, ISBN: 978-3-540-65035-5, Heidelberg, Germany. https://doi.org/10.1007/978-3-642-61995-3
  • Fues, E. (1926). Das eigenschwingungsspektrum zweiatomiger moleküle in der undulationsmechanik. Annalen der Physik, 385, 367-396. https://doi.org/10.1002/andp.19263851204
  • Ghanbari, A. (2023). Studying third harmonic generation in spherical quantum dot under inversely quadratic Hellmann potential. Optical and Quantum Electronics, 55, 222. https://doi.org/10.1007/s11082-022-04513-x
  • Haghighatzadeh, A. and Attarzadeh, A. (2023). A comprehensive investigation on valence-band electronic structure and linear and nonlinear optical properties of a laser-driven GaAsSb-based Rosen-Morse quantum well. The European Physical Journal B, 96, 125. https://doi.org/10.1140/epjb/s10051-023-00592-1
  • Hamzavi, M. and Rajabi, A. (2011). Exact s-wave solution of the trigonometric pöschl-teller potential. International Journal of Quantum Chemistry, 112, 1592–1597. https://doi.org/10.1002/qua.23166
  • Harrison, P. (2005). Numerical Solutions. In: Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures (Eds. Harrison, P. and Valavanis, A), John Wiley and Sons Ltd. ISBN:9780470010792, Chichester, England. http://doi.org/10.1002/0470010827
  • Hellmann, H. (1936). Ein kombiniertes Näherungsverfahren zur Energieberechnung im Vielelektronenproblem. II. Acta Physicochim. USSR, 4, 225-244.
  • Kasapoglu, E., Sarı, H., Sökmen, I., Vinasco, J.A., Laroze, D. and Duque, C.A. (2021). Effects of intense laser field and position dependent effective mass in Razavy quantum wells and quantum dots. Physica E: Low-dimensional Systems and Nanostructures, 126, 114461. https://doi.org/10.1016/j.physe.2020.114461
  • Khordad, R. (2013). Confinement of an exciton in a quantum dot: Effect of modified Kratzer potential. Indian Journal of Physics, 87, 623–628. https://doi.org/10.1007/s12648-013-0281-9
  • Khordad, R. and Mirhosseini, B. (2014). Linear and nonlinear optical properties in spherical quantum dots: Rosen–Morse potential. Condenced-Matter Spectroscopy, 117(3), 434-440. https://doi.org/10.1134/S0030400X14090100
  • Khurgin, J.B. (2023). Basic Physics of Intersubband Radiative and Nonradiative Processes. In: Mid-Infrared and Terahertz Quantum Cascade Lasers (Eds. Botez, D. and Belkin, A.M.), Cambridge University Press. ISBN: 9781108552066. https://doi.org/10.1017/9781108552066
  • Kratzer, A. (1920). Die ultraroten Rotationsspektren der Halogenwasserstoffe. Zeitschrift für Physik, 3, 289–307. https://doi.org/10.1007/BF01327754
  • Máthé, L., Onyenegecha, C.P., Farcaş, A.-A., Pioraş-Ţimbolmaş, L.-M., Solaimani, M. and Hassanabadi, H. (2021). Linear and nonlinear optical properties in spherical quantum dots: Inversely quadratic Hellmann potential. Physics Letters A, 397, 127262. https://doi.org/10.1016/j.physleta.2021.127262
  • Morse, P.M. (1929). Diatomic Molecules According to the Wave Mechanics. II. Vibrational Levels. Physical Review, 34, 57-64. https://doi.org/10.1103/PhysRev.34.57
  • Nieto, M.M. and Simmons Jr., L.M. (1979). Eigenstates, coherent states, and uncertainty products for the Morse oscillator. Physical Review A, 19(2), 438-444. https://doi.org/10.1103/PhysRevA.19.438
  • Njoku, I.J., Onyenegecha, C.P., Okereke, C.J., Nwaokafor, P. and Abara, C.C. (2023). Relativistic energies and information entropy of the inversely quadratic Hellmann potential. Physics Open, 15, 100152. https://doi.org/10.1016/j.physo.2023.100152
  • Persichetti, L., Montanari, M., Ciano, C., Di Gaspare, L., Ortolani, M., Baldassarre, L., Zoellner, M., Mukherjee, S., Moutanabbir, O., Capellini, G., Virgilio, M., and De Seta, M. (2020). Intersubband Transition Engineering in the Conduction Band of Asymmetric Coupled Ge/SiGe Quantum Wells. Crystals, 10(3), 179. https://doi.org/10.3390/cryst10030179
  • Pöschl, G. and Teller, E. (1933). Bemerkungen zur Quantenmechanik des anharmonischen Oszillators. Zeitschrift für Physik, 83, 143–151. https://doi.org/10.1007/BF01331132
  • Razavy, M. (1980). An exactly soluble Schrödinger equation with a bistable potential. American Journal of Physics, 48(4), 285-288. https://doi.org/10.1119/1.12141
  • Restrepo, R.L., Morales, A.L., Akimov, V., Tulupenko, V., Kasapoglu, E., Unfan F. and Duque C.A. (2015). Intense laser field effects on a Woods–Saxon potential quantum well. Superlattices and Microstructures, 87, 143-148. https://doi.org/10.1016/j.spmi.2015.03.070
  • Rosen, N. and Morse, P.M. (1932). On the Vibrations of Polyatomic Molecules. Physical Review, 42, 210-217. https://doi.org/10.1103/PhysRev.42.210
  • Sakiroglu, S., Kasapoglu, E., Restrepo, R.L., Duque, C.A. and Sökmen, I. (2016). Intense laser field-induced nonlinear optical properties of Morse quantum well. Physica Status Solidi B, 254(4), 1600457. https://doi.org/10.1002/pssb.201600457
  • Salman Durmuslar, A., Turkoglu, A., Mora-Ramos, M.E. and Ungan, F. (2022). The non-resonant intense laser field effects on the binding energies and the nonlinear optical properties of a donor impurity in Rosen-Morse quantum well. Indian Journal of Physics, 96(12), 3485–3492. https://doi.org/10.1007/s12648-021-02251-6
  • Sayrac, M., Peter, A.J. and Ungan, F. (2022). Interband transitions and exciton binding energy in a Razavy quantum well: effects of external fields and Razavy potential parameters. The European Physical Journal Plus, 137, 840. https://doi.org/10.1140/epjp/s13360-022-03038-2
  • Sous, A.J. (2007). Eigenenergies for the Razavy potential V(x) = (ζ cosh 2x-M)2 using the asymptotic iteration method. Modern Physics Letters A, 22(22), 1677-1684. https://doi.org/10.1142/S0217732307021433
  • Turkoglu, A., Dakhlaoui, H., Durmuslar, A.S., Mora-Ramos, M.E. and Ungan, F. (2021). Nonlinear optical properties of a quantum well with inversely quadratic Hellman potential. The European Physical Journal B, 94, 111. https://doi.org/10.1140/epjb/s10051-021-00129-4
  • Ungan, F. and Bahar, M.K. (2019). Optical specifications of laser-induced Rosen-Morse quantum well. Optical Materials, 90, 231-237. https://doi.org/10.1016/j.optmat.2019.02.040
  • Ungan, F. and Bahar, M.K. (2020). The laser field controlling on the nonlinear optical specifications of the electric field-triggered Rosen-Morse quantum well. Physics Letters A, 384(19), 126400. https://doi.org/10.1016/j.physleta.2020.126400
  • Ungan, F., Bahar, M.K., Barseghyan, M.G., Pérez, L.M. and Laroze, D. (2021). Effect of intense laser and electric fields on nonlinear optical properties of cylindrical quantum dot with Morse potential. Optik, 236, 166621. https://doi.org/10.1016/j.ijleo.2021.166621
  • Ungan, F., Martínez-Orozco, J.C., Restrepo, R.L. and Mora-Ramos, M.E. (2019). The nonlinear optical properties of GaAs-based quantum wells with Kratzer–Fues confining potential: Role of applied static fields and non-resonant laser radiation. Optik, 185, 881-887. https://doi.org/10.1016/j.ijleo.2019.03.129
  • Ungan, F., Mora-Ramos, M.E., Yesilgul U., Sari, H. and Sökmen, I. (2019). Effect of applied external fields on the nonlinear optical properties of a Woods-Saxon potential quantum well. Physica E: Low-dimensional systems and nanostructures, 111, 167-171. https://doi.org/10.1016/j.physe.2019.03.015
  • van der Walt, S., Colbert, S.C., and Varoquaux, G. (2011). The numpy array: A structure for efficient numerical computation. Computing in Science and Engineering, 13(2), 22-30. https://doi.org/10.1109/MCSE.2011.37
  • Woods, R.D. and Saxon, D.S. (1954). Diffuse surface optical model for nucleon-nuclei scattering. Physical Review, 95, 577-578. https://doi.org/10.1103/PhysRev.95.577
  • Xie, W. (2009). A study of two confined electrons using the Woods–Saxon potential. Journal of Physics: Condensed Matter, 21(11), 115802. https://doi.org/10.1088/0953-8984/21/11/115802
  • Yıldırım, H. and Tomak, M. (2005). Nonlinear optical properties of a Pöschl-Teller quantum well. Physical Review B, 72, 115340. https://doi.org/10.1103/physrevb.72.115340
  • Yildirim, H. and Tomak, M. (2006). Intensity-dependent refractive index of a Pöschl-Teller quantum well. Journal of Applied Physics, 99, 093103. https://doi.org/10.1063/1.2194124
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yoğun Maddenin Yapısal Özellikleri
Bölüm Araştırma Makaleleri
Yazarlar

Tərlan Zərbaliyev 0000-0003-1761-5397

Raşit Çakır 0000-0002-7104-9069

Hasan Yıldırım 0000-0002-7436-7759

Yayımlanma Tarihi 30 Haziran 2025
Gönderilme Tarihi 5 Mart 2024
Kabul Tarihi 7 Şubat 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 6 Sayı: 1

Kaynak Göster

APA Zərbaliyev, T., Çakır, R., & Yıldırım, H. (2025). Energy Levels and Absorption Coefficients for Diverse Bounded Potentials: A Comprehensive Analysis. Recep Tayyip Erdogan University Journal of Science and Engineering, 6(1), 14-31. https://doi.org/10.53501/rteufemud.1446402

Taranılan Dizinler

27717   22936   22937  22938   22939     22941   23010    23011   23019  23025