Araştırma Makalesi
BibTex RIS Kaynak Göster

Poly(ε-Caprolactone)/Poly(Ethylene Glycol)Dithiol Electrospun Nanofibers As a Carrier for the Potent Phytomedicine Bromelain

Yıl 2025, Cilt: 14 Sayı: 2, 213 - 219, 27.06.2025
https://doi.org/10.46810/tdfd.1633751

Öz

Bromelain, known for its anticancer, immunomodulatory, and anti-inflammatory properties, is a mixture of cysteine proteinases widely utilized in cosmetics and burn debridement. Its effects on wound healing are linked to enhance tissue reconstitution. In this study, we introduced a blend of hydrophilic dithiol-tagged poly(ethylene glycol) (PEGdt) and hydrophobic poly(ε-caprolactone) (PCL) nanofibers for the delivery of the potent phytomedicine bromelain. Following the determination of the optimum concentration of PEG-dt, we observed the enhancing effect of bromelain addition on both the physical characteristics and biocompatibility of electrospun nanofibers (ENs). An increased concentration of bromelain was found to enhance the hydrophilicity of PCL/PEGdt, as indicated by contact angle analysis. The addition of bromelain also created a favorable surface for cell adhesion. Overall, the proven biocompatibility and wettability of bromelain-added PCL/PEGdt ENs reveal their potential to address problems of existing cosmetic solutions in wound dressings, such as insufficient ability to absorb excess wound exudate

Kaynakça

  • Lanzalaco S, Molina BG. Polymers and Plastics Modified Electrodes for Biosensors: A Review. Molecules 2020;25.
  • Shahriar SMS, Mondal J, Hasan MN, Revuri V, Lee DY, Lee YK. Electrospinning nanofibers for therapeutics delivery. Nanomaterials 2019;9.
  • Saygili E, Saglam-Metiner P, Cakmak B, Alarcin E, Beceren G, Tulum P, Kim YW, Gunes K, Eren-Ozcan GG, Akakin D, Sun JY, Yesil-Celiktas O. Bilayered laponite/alginate-poly(acrylamide) composite hydrogel for osteochondral injuries enhances macrophage polarization: An in vivo study. Biomaterials Advances 2022;134.
  • Zarrintaj P, Jouyandeh M, Ganjali MR, Hadavand BS, Mozafari M, Sheiko SS, Vatankhah-Varnoosfaderani M, Gutiérrez TJ, Saeb MR. Thermo-sensitive polymers in medicine: A review. Eur Polym J 2019;117:402–23.
  • Oh J, Kim B. Mucoadhesive and pH-responsive behavior of gelatin containing hydrogels for protein drug delivery applications. Korea Australia Rheology Journal 2020;32:41–6.
  • Kaur G, Adhikari R, Cass P, Bown M, Gunatillake P. Electrically conductive polymers and composites for biomedical applications. RSC Adv 2015;5:37553–67.
  • Na H, Kang YW, Park CS, Jung S, Kim HY, Sun JY. Hydrogel-based strong and fast actuators by electroosmotic turgor pressure. Science 2022;376:301–7.
  • Fennell E, Huyghe JM. Chemically Responsive Hydrogel Deformation Mechanics: A Review. Molecules 2019;24.
  • Onofrillo C, Duchi S, Francis S, O’Connell CD, Caballero Aguilar LM, Doyle S, Yue Z, Wallace GG, Choong PF, Di Bella C. FLASH: Fluorescently LAbelled Sensitive Hydrogel to monitor bioscaffolds degradation during neocartilage generation. Biomaterials 2021;264:120383.
  • Ramakrishna S, Fujihara K, Teo WE, Yong T, Ma Z, Ramaseshan R. Electrospun nanofibers: solving global issues. Materials Today 2006;9:40–50.
  • Tipduangta P, Belton P, Fábián L, Wang LY, Tang H, Eddleston M, Qi S. Electrospun Polymer Blend Nanofibers for Tunable Drug Delivery: The Role of Transformative Phase Separation on Controlling the Release Rate. Mol Pharm 2016;13:25–39.
  • Kumar R, Alex Y, Nayak B, Mohanty S. Effect of poly (ethylene glycol) on 3D printed PLA/PEG blend: A study of physical, mechanical characterization and printability assessment. J Mech Behav Biomed Mater 2023;141:105813.
  • Mohammed MI, El-Sayed F. PEG’s impact as a plasticizer on the PVA polymer’s structural, thermal, mechanical, optical, and dielectric characteristics. Opt Quantum Electron 2023;55:1–22.
  • Tan X, Feng L, Zhang J, Yang K, Zhang S, Liu Z, Peng R. Functionalization of graphene oxide generates a unique interface for selective serum protein interactions. ACS Appl Mater Interfaces 2013;5:1370–7.
  • Iglesias-Echevarria M, Durante L, Johnson R, Rafuse M, Ding Y, Bonani W, Maniglio D, Tan W. Coaxial PCL/PEG-thiol–ene microfiber with tunable physico-chemical properties for regenerative scaffolds. Biomater Sci 2019;7:3640–51.
  • Pezzani R, Jiménez-Garcia M, Capó X, Sönmez Gürer E, Sharopov F, Rachel TYL, Ntieche Woutouoba D, Rescigno A, Peddio S, Zucca P, Tsouh Fokou PV, Martorell M, Gulsunoglu-Konuskan Z, Ydyrys A, Bekzat T, Gulmira T, Hano C, Sharifi-Rad J, Calina D. Anticancer properties of bromelain: State-of-the-art and recent trends. Front Oncol 2023;12.
  • Varilla C, Marcone M, Paiva L, Baptista J. Bromelain, a group of pineapple proteolytic complex enzymes (Ananas comosus) and their possible therapeutic and clinical effects. a summary. Foods 2021;10.
  • Marissa Z, Mita SR, Kusumawulan CK, Sriwidodo S. Antioxidant and Photoprotective Activity of Bromelain Cream: An In Vitro and In Vivo Study. Cosmetics 2025;12:41.
  • Kumar V, Mangla B, Javed S, Ahsan W, Kumar P, Garg V, Dureja H. Bromelain: a review of its mechanisms, pharmacological effects and potential applications. Food Funct 2023;14:8101–28.
  • Pezzani R, Jiménez-Garcia M, Capó X, Sönmez Gürer E, Sharopov F, Rachel TYL, Ntieche Woutouoba D, Rescigno A, Peddio S, Zucca P, Tsouh Fokou PV, Martorell M, Gulsunoglu-Konuskan Z, Ydyrys A, Bekzat T, Gulmira T, Hano C, Sharifi-Rad J, Calina D. Anticancer properties of bromelain: State-of-the-art and recent trends. Front Oncol 2023;12.
  • Saghafi Y, Baharifar H, Najmoddin N, Asefnejad A, Maleki H, Sajjadi-Jazi SM, Bonkdar A, Shams F, Khoshnevisan K. Bromelain- and Silver Nanoparticle-Loaded Polycaprolactone/Chitosan Nanofibrous Dressings for Skin Wound Healing. Gels 2023;9.
  • Chen X, Wang X, Wang S, Zhang X, Yu J, Wang C. Mussel-inspired polydopamine-assisted bromelain immobilization onto electrospun fibrous membrane for potential application as wound dressing. Materials Science and Engineering C 2020;110.
  • Shoba E, Lakra R, Syamala Kiran M, Korrapati PS. Fabrication of core–shell nanofibers for controlled delivery of bromelain and salvianolic acid B for skin regeneration in wound therapeutics. Biomedical Materials 2017;12:035005.
  • Bayat S, Amiri N, Pishavar E, Kalalinia F, Movaffagh J, Hahsemi M. Bromelain-loaded chitosan nanofibers prepared by electrospinning method for burn wound healing in animal models. Life Sci 2019;229:57–66.
  • Shadman-Manesh V, Gholipour-Kanani A, Najmoddin N, Rabbani S. Preclinical evaluation of the polycaprolactone-polyethylene glycol electrospun nanofibers containing egg-yolk oil for acceleration of full thickness burns healing. Scientific Reports 2023 13:1–12.
  • Jin SG, Yousaf AM, Kim KS, Kim DW, Kim DS, Kim JK, Yong CS, Youn YS, Kim JO, Choi HG. Influence of hydrophilic polymers on functional properties and wound healing efficacy of hydrocolloid based wound dressings. Int J Pharm 2016;501:160–6.
  • Junker JPE, Kamel RA, Caterson EJ, Eriksson E. Clinical Impact Upon Wound Healing and Inflammation in Moist, Wet, and Dry Environments. Adv Wound Care (New Rochelle) 2013;2:348–56.
  • Winter GD. Formation of the scab and the rate of epithelization of superficial wounds in the skin of the young domestic pig. Nature 1962;193:293–4.
  • Kazeminava F, Javanbakht S, Nouri M, Adibkia K, Ganbarov K, Yousefi M, et al. Electropun nanofibers based on carboxymethyl cellulose/polyvinyl alcohol as a potential antimicrobial wound dressing. Int J Biol Macromol. 2022;214:111-9.
  • Güven Çimen C, Dündar MA, Demirel Kars M, Avcı A. Enhancement of PCL/PLA electrospun nanocomposite fibers comprising silver nanoparticles encapsulated with Thymus vulgaris L. molecules for antibacterial and anticancer activities. ACS Biomater Sci Eng. 2022;8(9):3779–90.
  • Doustdar F, Ramezani S, Ghorbani M, Mortazavi Moghadam F. Optimization and characterization of a novel tea tree oil-integrated poly (ε-caprolactone)/soy protein isolate electrospun mat as a wound care system. Int J Pharm. 2022;627:122218.
  • Anaya Mancipe JM, Pereira LCB, Borchio PGM, Dias ML, Thiré RMSM, et al. Novel polycaprolactone (PCL)-type I collagen core-shell electrospun nanofibers for wound healing applications. J Biomed Mater Res B Appl Biomater. 2022;110(8):1703–12.
  • Kao HH, Kuo CY, Govindaraju DT, Chen KS, Chen JP, et al. Polycaprolactone/chitosan composite nanofiber membrane as a preferred scaffold for the culture of mesothelial cells and the repair of damaged mesothelium. Int J Mol Sci. 2022;23(17):9517.

Poly(ε-Caprolactone)/Poly(Ethylene Glycol)Dithiol Electrospun Nanofibers As a Carrier for the Potent Phytomedicine Bromelain

Yıl 2025, Cilt: 14 Sayı: 2, 213 - 219, 27.06.2025
https://doi.org/10.46810/tdfd.1633751

Öz

Bromelain, antikanser, immünomodülatör ve antiinflamatuar özellikleriyle bilinen ve kozmetik ile yanık debridmanı alanlarında yaygın olarak kullanılan sistein proteazlarının bir karışımıdır. Yara iyileşmesi üzerindeki etkileri, doku yenilenmesini desteklemesiyle ilişkilidir. Bu çalışmada, güçlü bir fitoterapötik ajan olan bromelainin kontrollü salımını sağlamak amacıyla, hidrofobik poli(ε-kaprolakton) (PCL) ve hidrofilik ditiyol-etiketli poli(etilen glikol) (PEGdt) nanofiberlerden oluşan bir sistem geliştirilmiştir. Optimum PEGdt konsantrasyonunun belirlenmesinin ardından, bromelain eklenmesinin elektroeğirme ile üretilen nanofiberlerin (ENs) fiziksel özellikleri ve biyouyumluluğu üzerindeki olumlu etkileri gözlemlenmiştir. Temas açısı analizi ile gösterildiği üzere, artan bromelain konsantrasyonu PCL/PEGdt'nin hidrofilitesini artırmış ve ayrıca hücre yapışması için uygun bir yüzey oluşturmuştur. Genel olarak, bromelain eklenmiş PCL/PEGdt EN’lerin kanıtlanmış biyouyumluluğu ve ıslanabilirliği, mevcut yara örtülerinde sıkça karşılaşılan fazla yara eksüdasını emme yetersizliği gibi problemlere çözüm sunma potansiyeline sahip olduğunu göstermektedir.

Kaynakça

  • Lanzalaco S, Molina BG. Polymers and Plastics Modified Electrodes for Biosensors: A Review. Molecules 2020;25.
  • Shahriar SMS, Mondal J, Hasan MN, Revuri V, Lee DY, Lee YK. Electrospinning nanofibers for therapeutics delivery. Nanomaterials 2019;9.
  • Saygili E, Saglam-Metiner P, Cakmak B, Alarcin E, Beceren G, Tulum P, Kim YW, Gunes K, Eren-Ozcan GG, Akakin D, Sun JY, Yesil-Celiktas O. Bilayered laponite/alginate-poly(acrylamide) composite hydrogel for osteochondral injuries enhances macrophage polarization: An in vivo study. Biomaterials Advances 2022;134.
  • Zarrintaj P, Jouyandeh M, Ganjali MR, Hadavand BS, Mozafari M, Sheiko SS, Vatankhah-Varnoosfaderani M, Gutiérrez TJ, Saeb MR. Thermo-sensitive polymers in medicine: A review. Eur Polym J 2019;117:402–23.
  • Oh J, Kim B. Mucoadhesive and pH-responsive behavior of gelatin containing hydrogels for protein drug delivery applications. Korea Australia Rheology Journal 2020;32:41–6.
  • Kaur G, Adhikari R, Cass P, Bown M, Gunatillake P. Electrically conductive polymers and composites for biomedical applications. RSC Adv 2015;5:37553–67.
  • Na H, Kang YW, Park CS, Jung S, Kim HY, Sun JY. Hydrogel-based strong and fast actuators by electroosmotic turgor pressure. Science 2022;376:301–7.
  • Fennell E, Huyghe JM. Chemically Responsive Hydrogel Deformation Mechanics: A Review. Molecules 2019;24.
  • Onofrillo C, Duchi S, Francis S, O’Connell CD, Caballero Aguilar LM, Doyle S, Yue Z, Wallace GG, Choong PF, Di Bella C. FLASH: Fluorescently LAbelled Sensitive Hydrogel to monitor bioscaffolds degradation during neocartilage generation. Biomaterials 2021;264:120383.
  • Ramakrishna S, Fujihara K, Teo WE, Yong T, Ma Z, Ramaseshan R. Electrospun nanofibers: solving global issues. Materials Today 2006;9:40–50.
  • Tipduangta P, Belton P, Fábián L, Wang LY, Tang H, Eddleston M, Qi S. Electrospun Polymer Blend Nanofibers for Tunable Drug Delivery: The Role of Transformative Phase Separation on Controlling the Release Rate. Mol Pharm 2016;13:25–39.
  • Kumar R, Alex Y, Nayak B, Mohanty S. Effect of poly (ethylene glycol) on 3D printed PLA/PEG blend: A study of physical, mechanical characterization and printability assessment. J Mech Behav Biomed Mater 2023;141:105813.
  • Mohammed MI, El-Sayed F. PEG’s impact as a plasticizer on the PVA polymer’s structural, thermal, mechanical, optical, and dielectric characteristics. Opt Quantum Electron 2023;55:1–22.
  • Tan X, Feng L, Zhang J, Yang K, Zhang S, Liu Z, Peng R. Functionalization of graphene oxide generates a unique interface for selective serum protein interactions. ACS Appl Mater Interfaces 2013;5:1370–7.
  • Iglesias-Echevarria M, Durante L, Johnson R, Rafuse M, Ding Y, Bonani W, Maniglio D, Tan W. Coaxial PCL/PEG-thiol–ene microfiber with tunable physico-chemical properties for regenerative scaffolds. Biomater Sci 2019;7:3640–51.
  • Pezzani R, Jiménez-Garcia M, Capó X, Sönmez Gürer E, Sharopov F, Rachel TYL, Ntieche Woutouoba D, Rescigno A, Peddio S, Zucca P, Tsouh Fokou PV, Martorell M, Gulsunoglu-Konuskan Z, Ydyrys A, Bekzat T, Gulmira T, Hano C, Sharifi-Rad J, Calina D. Anticancer properties of bromelain: State-of-the-art and recent trends. Front Oncol 2023;12.
  • Varilla C, Marcone M, Paiva L, Baptista J. Bromelain, a group of pineapple proteolytic complex enzymes (Ananas comosus) and their possible therapeutic and clinical effects. a summary. Foods 2021;10.
  • Marissa Z, Mita SR, Kusumawulan CK, Sriwidodo S. Antioxidant and Photoprotective Activity of Bromelain Cream: An In Vitro and In Vivo Study. Cosmetics 2025;12:41.
  • Kumar V, Mangla B, Javed S, Ahsan W, Kumar P, Garg V, Dureja H. Bromelain: a review of its mechanisms, pharmacological effects and potential applications. Food Funct 2023;14:8101–28.
  • Pezzani R, Jiménez-Garcia M, Capó X, Sönmez Gürer E, Sharopov F, Rachel TYL, Ntieche Woutouoba D, Rescigno A, Peddio S, Zucca P, Tsouh Fokou PV, Martorell M, Gulsunoglu-Konuskan Z, Ydyrys A, Bekzat T, Gulmira T, Hano C, Sharifi-Rad J, Calina D. Anticancer properties of bromelain: State-of-the-art and recent trends. Front Oncol 2023;12.
  • Saghafi Y, Baharifar H, Najmoddin N, Asefnejad A, Maleki H, Sajjadi-Jazi SM, Bonkdar A, Shams F, Khoshnevisan K. Bromelain- and Silver Nanoparticle-Loaded Polycaprolactone/Chitosan Nanofibrous Dressings for Skin Wound Healing. Gels 2023;9.
  • Chen X, Wang X, Wang S, Zhang X, Yu J, Wang C. Mussel-inspired polydopamine-assisted bromelain immobilization onto electrospun fibrous membrane for potential application as wound dressing. Materials Science and Engineering C 2020;110.
  • Shoba E, Lakra R, Syamala Kiran M, Korrapati PS. Fabrication of core–shell nanofibers for controlled delivery of bromelain and salvianolic acid B for skin regeneration in wound therapeutics. Biomedical Materials 2017;12:035005.
  • Bayat S, Amiri N, Pishavar E, Kalalinia F, Movaffagh J, Hahsemi M. Bromelain-loaded chitosan nanofibers prepared by electrospinning method for burn wound healing in animal models. Life Sci 2019;229:57–66.
  • Shadman-Manesh V, Gholipour-Kanani A, Najmoddin N, Rabbani S. Preclinical evaluation of the polycaprolactone-polyethylene glycol electrospun nanofibers containing egg-yolk oil for acceleration of full thickness burns healing. Scientific Reports 2023 13:1–12.
  • Jin SG, Yousaf AM, Kim KS, Kim DW, Kim DS, Kim JK, Yong CS, Youn YS, Kim JO, Choi HG. Influence of hydrophilic polymers on functional properties and wound healing efficacy of hydrocolloid based wound dressings. Int J Pharm 2016;501:160–6.
  • Junker JPE, Kamel RA, Caterson EJ, Eriksson E. Clinical Impact Upon Wound Healing and Inflammation in Moist, Wet, and Dry Environments. Adv Wound Care (New Rochelle) 2013;2:348–56.
  • Winter GD. Formation of the scab and the rate of epithelization of superficial wounds in the skin of the young domestic pig. Nature 1962;193:293–4.
  • Kazeminava F, Javanbakht S, Nouri M, Adibkia K, Ganbarov K, Yousefi M, et al. Electropun nanofibers based on carboxymethyl cellulose/polyvinyl alcohol as a potential antimicrobial wound dressing. Int J Biol Macromol. 2022;214:111-9.
  • Güven Çimen C, Dündar MA, Demirel Kars M, Avcı A. Enhancement of PCL/PLA electrospun nanocomposite fibers comprising silver nanoparticles encapsulated with Thymus vulgaris L. molecules for antibacterial and anticancer activities. ACS Biomater Sci Eng. 2022;8(9):3779–90.
  • Doustdar F, Ramezani S, Ghorbani M, Mortazavi Moghadam F. Optimization and characterization of a novel tea tree oil-integrated poly (ε-caprolactone)/soy protein isolate electrospun mat as a wound care system. Int J Pharm. 2022;627:122218.
  • Anaya Mancipe JM, Pereira LCB, Borchio PGM, Dias ML, Thiré RMSM, et al. Novel polycaprolactone (PCL)-type I collagen core-shell electrospun nanofibers for wound healing applications. J Biomed Mater Res B Appl Biomater. 2022;110(8):1703–12.
  • Kao HH, Kuo CY, Govindaraju DT, Chen KS, Chen JP, et al. Polycaprolactone/chitosan composite nanofiber membrane as a preferred scaffold for the culture of mesothelial cells and the repair of damaged mesothelium. Int J Mol Sci. 2022;23(17):9517.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Biyomateryaller
Bölüm Makaleler
Yazarlar

Ozan Yeşiltepe 0000-0003-1914-1201

Nefise Yılmaz 0009-0008-3219-3907

Özge Kozguş Güldü 0000-0001-7028-0720

Ecem Saygılı 0000-0002-8389-9079

Emin İlker Medine 0000-0003-0139-7110

Dilek Odacı 0000-0002-7954-1381

Yayımlanma Tarihi 27 Haziran 2025
Gönderilme Tarihi 5 Şubat 2025
Kabul Tarihi 28 Mayıs 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 14 Sayı: 2

Kaynak Göster

APA Yeşiltepe, O., Yılmaz, N., Kozguş Güldü, Ö., Saygılı, E., vd. (2025). Poly(ε-Caprolactone)/Poly(Ethylene Glycol)Dithiol Electrospun Nanofibers As a Carrier for the Potent Phytomedicine Bromelain. Türk Doğa Ve Fen Dergisi, 14(2), 213-219. https://doi.org/10.46810/tdfd.1633751
AMA Yeşiltepe O, Yılmaz N, Kozguş Güldü Ö, Saygılı E, Medine Eİ, Odacı D. Poly(ε-Caprolactone)/Poly(Ethylene Glycol)Dithiol Electrospun Nanofibers As a Carrier for the Potent Phytomedicine Bromelain. TDFD. Haziran 2025;14(2):213-219. doi:10.46810/tdfd.1633751
Chicago Yeşiltepe, Ozan, Nefise Yılmaz, Özge Kozguş Güldü, Ecem Saygılı, Emin İlker Medine, ve Dilek Odacı. “Poly(ε-Caprolactone)/Poly(Ethylene Glycol)Dithiol Electrospun Nanofibers As a Carrier for the Potent Phytomedicine Bromelain”. Türk Doğa Ve Fen Dergisi 14, sy. 2 (Haziran 2025): 213-19. https://doi.org/10.46810/tdfd.1633751.
EndNote Yeşiltepe O, Yılmaz N, Kozguş Güldü Ö, Saygılı E, Medine Eİ, Odacı D (01 Haziran 2025) Poly(ε-Caprolactone)/Poly(Ethylene Glycol)Dithiol Electrospun Nanofibers As a Carrier for the Potent Phytomedicine Bromelain. Türk Doğa ve Fen Dergisi 14 2 213–219.
IEEE O. Yeşiltepe, N. Yılmaz, Ö. Kozguş Güldü, E. Saygılı, E. İ. Medine, ve D. Odacı, “Poly(ε-Caprolactone)/Poly(Ethylene Glycol)Dithiol Electrospun Nanofibers As a Carrier for the Potent Phytomedicine Bromelain”, TDFD, c. 14, sy. 2, ss. 213–219, 2025, doi: 10.46810/tdfd.1633751.
ISNAD Yeşiltepe, Ozan vd. “Poly(ε-Caprolactone)/Poly(Ethylene Glycol)Dithiol Electrospun Nanofibers As a Carrier for the Potent Phytomedicine Bromelain”. Türk Doğa ve Fen Dergisi 14/2 (Haziran 2025), 213-219. https://doi.org/10.46810/tdfd.1633751.
JAMA Yeşiltepe O, Yılmaz N, Kozguş Güldü Ö, Saygılı E, Medine Eİ, Odacı D. Poly(ε-Caprolactone)/Poly(Ethylene Glycol)Dithiol Electrospun Nanofibers As a Carrier for the Potent Phytomedicine Bromelain. TDFD. 2025;14:213–219.
MLA Yeşiltepe, Ozan vd. “Poly(ε-Caprolactone)/Poly(Ethylene Glycol)Dithiol Electrospun Nanofibers As a Carrier for the Potent Phytomedicine Bromelain”. Türk Doğa Ve Fen Dergisi, c. 14, sy. 2, 2025, ss. 213-9, doi:10.46810/tdfd.1633751.
Vancouver Yeşiltepe O, Yılmaz N, Kozguş Güldü Ö, Saygılı E, Medine Eİ, Odacı D. Poly(ε-Caprolactone)/Poly(Ethylene Glycol)Dithiol Electrospun Nanofibers As a Carrier for the Potent Phytomedicine Bromelain. TDFD. 2025;14(2):213-9.