Let $H$ be a Hilbert space. In this paper we show among others that, if $f$
is continuous differentiable convex on the open interval $I$ and $A,$ $B$
are selfadjoint operators in $B\left( H\right) $ with spectra $Sp( A) ,$ $Sp( B) \subset I,$ then we have the
tensorial inequality
\begin{align*}
\left( f^{\prime }\left( A\right) \otimes 1\right)\left( A\otimes1-1\otimes B\right)& \geq f\left(A\right) \otimes 1-1\otimes f\left(B\right) \\
& \geq \left( A\otimes 1-1\otimes B\right) \left( 1\otimes f^{\prime }\left(
B\right) \right)
\end{align*}
and the inequality for Hadamard product
\begin{align*}
\left( f^{\prime }\left( A\right) A\right) \circ 1-f^{\prime }\left(
A\right) \circ B& \geq \left[ f\left( A\right) -f\left( B\right) \right]
\circ 1 \\
& \geq A\circ f^{\prime }\left( B\right) -\left( f^{\prime }\left( B\right)
B\right) \circ 1.
\end{align*}.
Tensorial product Hadamard product selfadjoint operators convex functions.
Birincil Dil | İngilizce |
---|---|
Konular | Operatör Cebirleri ve Fonksiyonel Analiz |
Bölüm | Makaleler |
Yazarlar | |
Yayımlanma Tarihi | 30 Haziran 2025 |
Yayımlandığı Sayı | Yıl 2025 Cilt: 17 Sayı: 1 |