Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2025, Cilt: 9 Sayı: 2, 331 - 347, 26.06.2025
https://doi.org/10.31015/2025.2.8

Öz

Kaynakça

  • Anderson, R. T., Vrionis, H. A., Ortiz-Bernad, I., Resch, C. T., Long, P. E., Dayvault, R., Karp, K., Marutzky, S., Metzler, D. R., Peacock, A., White, D. C., Lowe, M., & Lovley, D. R. (2003a). Stimulating the In Situ Activity of Geobacter Species to Remove Uranium from the Groundwater of a Uranium-Contaminated Aquifer. Applied and Environmental Microbiology, 69(10), 5884–5891. https://doi.org/10.1128/AEM.69.10.5884-5891.2003
  • Baalbaki, Z., Torfs, E., Yargeau, V., & Vanrolleghem, P. A. (2017). Predicting the fate of micropollutants during wastewater treatment: Calibration and sensitivity analysis. Science of the Total Environment, 601, 874-885.
  • Badriyha, B. N., Ravindran, V., Den, W., & Pirbazari, M. (2003). Bioadsorber efficiency, design, and performance forecasting for alachlor removal. Water Research, 37(17), 4051-4072.
  • Chaudhuri, S. K., Lack, J. G., & Coates, J. D. (2001). Biogenic magnetite formation through anaerobic biooxidation of Fe (II). Applied and environmental microbiology, 67(6), 2844-2848.
  • China, M., & Kumar, S. (2004). Sensitivity analysis of biodegradation of soil applied pesticides using a simulation model. Biochemical engineering journal, 19(2), 119-125.
  • Dastidar, A., & Wang, Y. T. (2009). Arsenite oxidation by batch cultures of Thiomonas arsenivorans strain b6. Journal of Environmental Engineering, 135(8), 708-715.
  • Dastidar, A., & Wang, Y. T. (2012). Modeling arsenite oxidation by chemoautotrophic Thiomonas arsenivorans strain b6 in a packed-bed bioreactor. Science of the total environment, 432, 113-121.
  • Den, W., & Pirbazari, M. (2002). Modeling and design of vapor‐phase biofiltration for chlorinated volatile organic compounds. AIChE journal, 48(9), 2084-2103.
  • Gihring, T. M., Zhang, G., Brandt, C. C., Brooks, S. C., Campbell, J. H., Carroll, S., Criddle, C. S., Green, S. J., Jardine, P., Kostka, J. E., Lowe, K., Mehlhorn, T. L., Overholt, W., Watson, D. B., Yang, Z., Wu, W. M., & Schadt, C. W. (2011). A limited microbial consortium is responsible for extended bioreduction of uranium in a contaminated aquifer. Applied and Environmental Microbiology, 77(17), 5955–5965. https://doi.org/10.1128/AEM.00220-11
  • Gu, B., Wu, W. M., Ginder-Vogel, M. A., Yan, H., Fields, M. W., Zhou, J., Fendorf, S., Criddle, C. S., & Jardine, P. M. (2005). Bioreduction of uranium in a contaminated soil column. Environmental Science and Technology, 39(13), 4841–4847. https://doi.org/10.1021/es050011y
  • Lens, P.N., Meulepas, R.J., Sampaio, R., Vallero, M. and Esposito, G. (2008). Bioprocess engineering of sulfate reduction for environmental technology. In Microbial sulfur metabolism. Springer Berlin Heidelberg. 285-295.
  • Lin, Y. H., & Wu, C. L. (2011). Sensitivity analysis of phenol degradation with sulfate reduction under anaerobic conditions. Environmental Modeling & Assessment, 16, 213-225.
  • Malaguerra, F., Chambon, J. C., Bjerg, P. L., Scheutz, C., & Binning, P. J. (2011). Development and sensitivity analysis of a fully kinetic model of sequential reductive dechlorination in groundwater. Environmental science & technology, 45(19), 8395-8402.
  • Moriasi, D. N., Gitau, M. W., Pai, N., & Daggupati, P. (2015). Hydrologic and water quality models: Performance measures and evaluation criteria. Transactions of the ASABE, 58(6), 1763-1785.
  • Neumann, M. B. (2012). Comparison of sensitivity analysis methods for pollutant degradation modelling: A case study from drinking water treatment. Science of the total environment, 433, 530-537.
  • Parkhurst, D. L., & Appelo, C. A. J. (2013). Description of input and examples for PHREEQC version 3—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US geological survey techniques and methods, 6(A43), 497.
  • Pontes, R. F., Moraes, J. E., Machulek Jr, A., & Pinto, J. M. (2010). A mechanistic kinetic model for phenol degradation by the Fenton process. Journal of hazardous materials, 176(1-3), 402-413.
  • Riefler, R. G., Ahlfeld, D. P., & Smets, B. F. (1998). Respirometric assay for biofilm kinetics estimation: parameter identifiability and retrievability. Biotechnology and bioengineering, 57(1), 35-45.
  • Renshaw, J. C., Butchins, L. J. C., Livens, F. R., May, I., Charnock, J. M., & Lloyd, J. R. (2005a). Bioreduction of uranium: Environmental implications of a pentavalent intermediate. Environmental Science and Technology, 39(15), 5657–5660. https://doi.org/10.1021/es048232b
  • Sani, R. K., Peyton, B. M., Amonette, J. E., & Geesey, G. G. (2004). Reduction of uranium (VI) under sulfate-reducing conditions in the presence of Fe (III)-(hydr) oxides. Geochimica et Cosmochimica Acta, 68(12), 2639-2648.
  • Scarlat, E., Zapodeanu, D., & Ioan, C. M. (2014). Comparing Smoothing Technique Efficiency in Small Time Series Datasets after a Structural Break in Mean. In Recent Developments in Computational Collective Intelligence (pp. 145-153). Springer International Publishing.
  • Seyfi, H., Shafiei, S., Dehghanzadeh, R., & Amirabedi, P. (2021). Mathematical Modeling and Parameters Optimization of the Degradation of Acrylonitrile in Biofilters. Iranian Journal of Chemical Engineering (IJChE), 18(3), 3-15.
  • Spycher, N. F., Issarangkun, M., Stewart, B. D., Şengör, S. S., Belding, E., Ginn, T. R., ... & Sani, R. K. (2011). Biogenic uraninite precipitation and its reoxidation by iron (III)(hydr) oxides: A reaction modeling approach. Geochimica et Cosmochimica Acta, 75(16), 4426-4440.
  • Şengör, S. S., Mayer, K. U., Greskowiak, J., Wanner, C., Su, D., & Prommer, H. (2015). A reactive transport benchmark on modeling biogenic uraninite re-oxidation by Fe (III)-(hydr) oxides. Computational geosciences, 19, 569-583.
  • Tokunaga, T. K., Wan, J., Kim, Y., Daly, R. A., Brodie, E. L., Hazen, T. C., Herman, D., & Firestone, M.K. (2008). Influences of organic carbon supply rate on uranium bioreduction in initially oxidizing, contaminated sediment. Environmental Science and Technology, 42(23), 8901–8907. https://doi.org/10.1021/es8019947
  • Vázquez-Rodríguez, G., Youssef, C. B., & Waissma-Vilanova, J. (2006). Two-step modeling of the biodegradation of phenol by an acclimated activated sludge. Chemical Engineering Journal, 117(3), 245-252.
  • Walpole, R. E., Myers, R. H., Myers, S. L., & Ye, K. (1993). Probability and statistics for engineers and scientists (Vol. 5, pp. 326-332). New York: Macmillan.
  • Wilkins, M. J., Livens, F. R., Vaughan, D. J., & Lloyd, J. R. (2006). The impact of Fe(III)-reducing bacteria on uranium mobility. Biogeochemistry, 78(2), 125–150. https://doi.org/10.1007/s10533-005-3655-z
  • Wufuer, R., Wei, Y., Lin, Q., Wang, H., Song, W., Liu, W., ... & Gadd, G. M. (2017). Uranium bioreduction and biomineralization. Advances in applied microbiology, 101, 137-168.
  • Yabusaki, S. B., Fang, Y., Williams, K. H., Murray, C. J., Ward, A. L., Dayvault, R. D., ... & Long, P. E. (2011). Variably saturated flow and multicomponent biogeochemical reactive transport modeling of a uranium bioremediation field experiment. Journal of contaminant hydrology, 126(3-4), 271-290.
  • Zhou, X. H., Liu, J., Song, H. M., Qiu, Y. Q., & Shi, H. C. (2012). Estimation of heterotrophic biokinetic parameters in wastewater biofilms from oxygen concentration profiles by microelectrode. Environmental Engineering Science, 29(6), 466-471

Sensitivity analysis of uranium reduction and its reoxidation by Fe(III)- (hydr)oxides biogeochemical reaction dynamics

Yıl 2025, Cilt: 9 Sayı: 2, 331 - 347, 26.06.2025
https://doi.org/10.31015/2025.2.8

Öz

Sensitivity analysis is a useful tool in modeling environmental systems to identify how variations in model parameters would impact model outputs. In modeling environmental processes in biological systems, the rates and processes of biodegradation reactions are described using biokinetic parameters. Reducing the parameter uncertainty in modeling efforts would be important for reliable and accurate model results. Understanding the impact of variations in the biokinetic parameters would be highly critical to help to reduce the uncertainity in model predictions. This study presents a sensitivity analysis of the biokinetic parameters affecting the biogeochemical reaction network for uranium biotransformation dynamics. The main reactions included in the network are sulfate bioreduction, Fe(III) bioreduction, U(VI) reduction to U(IV), Fe(III) reduction by sulfide, U(IV) reoxidation to U(VI) and sulfur precipitation-dissolution reactions. The sensitivity analysis results revealed that changes in the biokinetic parameters to the sulfate bioreduction reaction had the most significant impact to the model outputs. Among the parameters, maximum substrate utilization rate and yield coefficient had the most significant impact, whereas half-saturation constants had slightly less impact on model results. U(VI) concentration predictions were the most sensitive towards variations in biokinetics parameters among the species monitored within the biogeochemical reaction network. Fe(III) bioreduction, Fe(III) reduction by sulfide and sulfur precipitation/dissolution reactions were not shown to be sensitive to any changes in the biokinetic parameters.

Etik Beyan

Peer-review Externally peer-reviewed. Declaration of Interests The authors declared that for this research article, they have no actual, potential or perceived conflict of interest.

Kaynakça

  • Anderson, R. T., Vrionis, H. A., Ortiz-Bernad, I., Resch, C. T., Long, P. E., Dayvault, R., Karp, K., Marutzky, S., Metzler, D. R., Peacock, A., White, D. C., Lowe, M., & Lovley, D. R. (2003a). Stimulating the In Situ Activity of Geobacter Species to Remove Uranium from the Groundwater of a Uranium-Contaminated Aquifer. Applied and Environmental Microbiology, 69(10), 5884–5891. https://doi.org/10.1128/AEM.69.10.5884-5891.2003
  • Baalbaki, Z., Torfs, E., Yargeau, V., & Vanrolleghem, P. A. (2017). Predicting the fate of micropollutants during wastewater treatment: Calibration and sensitivity analysis. Science of the Total Environment, 601, 874-885.
  • Badriyha, B. N., Ravindran, V., Den, W., & Pirbazari, M. (2003). Bioadsorber efficiency, design, and performance forecasting for alachlor removal. Water Research, 37(17), 4051-4072.
  • Chaudhuri, S. K., Lack, J. G., & Coates, J. D. (2001). Biogenic magnetite formation through anaerobic biooxidation of Fe (II). Applied and environmental microbiology, 67(6), 2844-2848.
  • China, M., & Kumar, S. (2004). Sensitivity analysis of biodegradation of soil applied pesticides using a simulation model. Biochemical engineering journal, 19(2), 119-125.
  • Dastidar, A., & Wang, Y. T. (2009). Arsenite oxidation by batch cultures of Thiomonas arsenivorans strain b6. Journal of Environmental Engineering, 135(8), 708-715.
  • Dastidar, A., & Wang, Y. T. (2012). Modeling arsenite oxidation by chemoautotrophic Thiomonas arsenivorans strain b6 in a packed-bed bioreactor. Science of the total environment, 432, 113-121.
  • Den, W., & Pirbazari, M. (2002). Modeling and design of vapor‐phase biofiltration for chlorinated volatile organic compounds. AIChE journal, 48(9), 2084-2103.
  • Gihring, T. M., Zhang, G., Brandt, C. C., Brooks, S. C., Campbell, J. H., Carroll, S., Criddle, C. S., Green, S. J., Jardine, P., Kostka, J. E., Lowe, K., Mehlhorn, T. L., Overholt, W., Watson, D. B., Yang, Z., Wu, W. M., & Schadt, C. W. (2011). A limited microbial consortium is responsible for extended bioreduction of uranium in a contaminated aquifer. Applied and Environmental Microbiology, 77(17), 5955–5965. https://doi.org/10.1128/AEM.00220-11
  • Gu, B., Wu, W. M., Ginder-Vogel, M. A., Yan, H., Fields, M. W., Zhou, J., Fendorf, S., Criddle, C. S., & Jardine, P. M. (2005). Bioreduction of uranium in a contaminated soil column. Environmental Science and Technology, 39(13), 4841–4847. https://doi.org/10.1021/es050011y
  • Lens, P.N., Meulepas, R.J., Sampaio, R., Vallero, M. and Esposito, G. (2008). Bioprocess engineering of sulfate reduction for environmental technology. In Microbial sulfur metabolism. Springer Berlin Heidelberg. 285-295.
  • Lin, Y. H., & Wu, C. L. (2011). Sensitivity analysis of phenol degradation with sulfate reduction under anaerobic conditions. Environmental Modeling & Assessment, 16, 213-225.
  • Malaguerra, F., Chambon, J. C., Bjerg, P. L., Scheutz, C., & Binning, P. J. (2011). Development and sensitivity analysis of a fully kinetic model of sequential reductive dechlorination in groundwater. Environmental science & technology, 45(19), 8395-8402.
  • Moriasi, D. N., Gitau, M. W., Pai, N., & Daggupati, P. (2015). Hydrologic and water quality models: Performance measures and evaluation criteria. Transactions of the ASABE, 58(6), 1763-1785.
  • Neumann, M. B. (2012). Comparison of sensitivity analysis methods for pollutant degradation modelling: A case study from drinking water treatment. Science of the total environment, 433, 530-537.
  • Parkhurst, D. L., & Appelo, C. A. J. (2013). Description of input and examples for PHREEQC version 3—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US geological survey techniques and methods, 6(A43), 497.
  • Pontes, R. F., Moraes, J. E., Machulek Jr, A., & Pinto, J. M. (2010). A mechanistic kinetic model for phenol degradation by the Fenton process. Journal of hazardous materials, 176(1-3), 402-413.
  • Riefler, R. G., Ahlfeld, D. P., & Smets, B. F. (1998). Respirometric assay for biofilm kinetics estimation: parameter identifiability and retrievability. Biotechnology and bioengineering, 57(1), 35-45.
  • Renshaw, J. C., Butchins, L. J. C., Livens, F. R., May, I., Charnock, J. M., & Lloyd, J. R. (2005a). Bioreduction of uranium: Environmental implications of a pentavalent intermediate. Environmental Science and Technology, 39(15), 5657–5660. https://doi.org/10.1021/es048232b
  • Sani, R. K., Peyton, B. M., Amonette, J. E., & Geesey, G. G. (2004). Reduction of uranium (VI) under sulfate-reducing conditions in the presence of Fe (III)-(hydr) oxides. Geochimica et Cosmochimica Acta, 68(12), 2639-2648.
  • Scarlat, E., Zapodeanu, D., & Ioan, C. M. (2014). Comparing Smoothing Technique Efficiency in Small Time Series Datasets after a Structural Break in Mean. In Recent Developments in Computational Collective Intelligence (pp. 145-153). Springer International Publishing.
  • Seyfi, H., Shafiei, S., Dehghanzadeh, R., & Amirabedi, P. (2021). Mathematical Modeling and Parameters Optimization of the Degradation of Acrylonitrile in Biofilters. Iranian Journal of Chemical Engineering (IJChE), 18(3), 3-15.
  • Spycher, N. F., Issarangkun, M., Stewart, B. D., Şengör, S. S., Belding, E., Ginn, T. R., ... & Sani, R. K. (2011). Biogenic uraninite precipitation and its reoxidation by iron (III)(hydr) oxides: A reaction modeling approach. Geochimica et Cosmochimica Acta, 75(16), 4426-4440.
  • Şengör, S. S., Mayer, K. U., Greskowiak, J., Wanner, C., Su, D., & Prommer, H. (2015). A reactive transport benchmark on modeling biogenic uraninite re-oxidation by Fe (III)-(hydr) oxides. Computational geosciences, 19, 569-583.
  • Tokunaga, T. K., Wan, J., Kim, Y., Daly, R. A., Brodie, E. L., Hazen, T. C., Herman, D., & Firestone, M.K. (2008). Influences of organic carbon supply rate on uranium bioreduction in initially oxidizing, contaminated sediment. Environmental Science and Technology, 42(23), 8901–8907. https://doi.org/10.1021/es8019947
  • Vázquez-Rodríguez, G., Youssef, C. B., & Waissma-Vilanova, J. (2006). Two-step modeling of the biodegradation of phenol by an acclimated activated sludge. Chemical Engineering Journal, 117(3), 245-252.
  • Walpole, R. E., Myers, R. H., Myers, S. L., & Ye, K. (1993). Probability and statistics for engineers and scientists (Vol. 5, pp. 326-332). New York: Macmillan.
  • Wilkins, M. J., Livens, F. R., Vaughan, D. J., & Lloyd, J. R. (2006). The impact of Fe(III)-reducing bacteria on uranium mobility. Biogeochemistry, 78(2), 125–150. https://doi.org/10.1007/s10533-005-3655-z
  • Wufuer, R., Wei, Y., Lin, Q., Wang, H., Song, W., Liu, W., ... & Gadd, G. M. (2017). Uranium bioreduction and biomineralization. Advances in applied microbiology, 101, 137-168.
  • Yabusaki, S. B., Fang, Y., Williams, K. H., Murray, C. J., Ward, A. L., Dayvault, R. D., ... & Long, P. E. (2011). Variably saturated flow and multicomponent biogeochemical reactive transport modeling of a uranium bioremediation field experiment. Journal of contaminant hydrology, 126(3-4), 271-290.
  • Zhou, X. H., Liu, J., Song, H. M., Qiu, Y. Q., & Shi, H. C. (2012). Estimation of heterotrophic biokinetic parameters in wastewater biofilms from oxygen concentration profiles by microelectrode. Environmental Engineering Science, 29(6), 466-471
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Çevresel Değerlendirme ve İzleme, Çevre Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

S.sevinc Sengor 0000-0003-3944-1172

Yayımlanma Tarihi 26 Haziran 2025
Gönderilme Tarihi 9 Ocak 2025
Kabul Tarihi 12 Mayıs 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 9 Sayı: 2

Kaynak Göster

APA Sengor, S. (2025). Sensitivity analysis of uranium reduction and its reoxidation by Fe(III)- (hydr)oxides biogeochemical reaction dynamics. International Journal of Agriculture Environment and Food Sciences, 9(2), 331-347. https://doi.org/10.31015/2025.2.8


The International Journal of Agriculture, Environment and Food Sciences content is licensed under a Creative Commons Attribution-NonCommercial (CC BY-NC) 4.0 International License which permits third parties to share and adapt the content for non-commercial purposes by giving the appropriate credit to the original work. Authors retain the copyright of their published work in the International Journal of Agriculture, Environment and Food Sciences. 

Web:  dergipark.org.tr/jaefs  E-mail: editor@jaefs.com WhatsApp: +90 850 309 59 27