Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2025, Cilt: 9 Sayı: 2, 477 - 492, 26.06.2025
https://doi.org/10.31015/2025.2.21

Öz

Kaynakça

  • Abbaszadeh-Dahaji, P., Atajan, F.A., Omidvari, M., Tahan, V., Kariman, K. (2021). Mitigation of copper stress in maize (Zea mays) and sunflower (Helianthus annuus) plants by copper-resistant Pseudomonas strains. Current Microbiology, 78(1), 1335-1343. https://doi.org/10.1007/s00284-021-02408-w
  • Abdel Latef, A.A.H., Zaid, A., Abo-Baker, A.B.A.E., Salem, W., Abu Alhmad, M.F. (2020). Mitigation of copper stress in maize by inoculation with Paenibacillus polymyxa and Bacillus circulans. Plants, 9(11), 1513. https://doi.org/10.3390/plants9111513
  • Afa, M., Sadimantara, GR., Rahni, NM. & Sutariati G.A.K. (2020). Isolation and characterization of rhizobacteria from local shallots rhizosphere as promoting growth of shallot (Allium ascalonicum L.). International Journal of Scientific & Technology Research 9(3), 322-833.
  • Ahmad, F., Ahmad, I & Khan, M.S. (2008). Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiology Research 163(2), 173-181. https://doi.org/10.1016/j.micres.2006.04.001
  • Aliyat, F. Z., Maldani, M., El Guilli, M., Nassiri, L., & Ibijbijen, J. (2022). Phosphate-solubilizing bacteria isolated from phosphate solid sludge and their ability to solubilize three inorganic phosphate forms: Calcium, iron, and aluminum phosphates. Microorganisms, 10(5), 980. https://doi.org/10.3390/microorganisms10050980
  • Alnefai, M.H., Metwali, E.M., Almaghrabi, O.A., Abdelmoneim, T.S. (2020). Biological Studies on the Effect of Plant Growth Promoting Rhizobacteria on Tomato (Solanum lycopersicum) Plants. Journal of American Science,16(2), 74-81.
  • Amri, M., Rjeibi, M. R., Gatrouni, M., Mateus, D. M., Asses, N., Pinho, H. J., & Abbes, C. (2023). Isolation, identification, and characterization of phosphate-solubilizing bacteria from Tunisian soils. Microorganisms, 11(3), 783. https://doi.org/10.3390/microorganisms11030783
  • Azeez, M.O., Adesanwo, O.O., Adepetu, J.A. (2015). Effect of Copper (Cu) Treatment on soil available nutrients and uptake. African Journal of Agricultural Research, 10(5), 359-364. https://doi.org/10.5897/ajar2014.9010
  • Bajpai, A.B., Dheer, P., Sharma, M. D., Rayal, R., Rautela, I. (2021). Influence of Heavy Metals on Seed Germination, Shoot Length, Root Length and the Profiling of Antioxidant Activity of Linum usitatissimum L. Journal of Mountain Research, 16(3), 215-228. https://doi.org/10.51220/jmr.v16i3.23
  • Bakker, AW. & Schippers, B. (1987). Microbial cyanides production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp. mediated plant growth stimulation. Soil Biology and Biochemistry, 19(4), 451-457. https://doi.org/10.1016/0038-0717(87)90037-x
  • Ballabio, C., Panagos, P., Lugato, E., Huang, J. H., Orgiazzi, A., Jones, A., Montanarella, L. (2018). Copper distribution in European topsoils: An assessment based on Lucas soil survey. Science of the Total Environment, 636: 282-298. https://doi.org/10.1016/j.scitotenv.2018.04.268
  • Bashan, Y., Holguin, G., & Lifshitz, R. (1993). Isolation and characterization of plant growth-promoting rhizobacteria. Methods in Plant Molecular Biology and Biotechnology, 331-345.
  • Blanco-Vargas, A., Rodríguez-Gacha, L. M., Sánchez-Castro, N., Garzón-Jaramillo, R., Pedroza-Camacho, L. D., Poutou-Piñales, R.A., & Pedroza-Rodríguez, A.M. (2020). Phosphate-solubilizing Pseudomonas sp., and Serratia sp., co-culture for Allium cepa L. growth promotion. Heliyon, 6(10). https://doi.org/10.1016/j.heliyon.2020.e05218
  • Çelikten, M., & Bozkurt, İ.A. (2018). Buğday kök bölgesinden izole edilen bakterilerin buğday gelişimine olan etkilerinin belirlenmesi. Mustafa Kemal Üniversitesi Ziraat Fakültesi Dergisi, 23(1), 33-48.
  • Deshwal, V.K. & Kumar, P. (2013). Production of plant growth promoting substance by Pseudomonads, Journal of Academia and Industrial Research 2(4), 221-225.
  • Devanathan, J., Thiripurasundari, T., Selvam, K., Selvaraj, S., Ramadass, L. (2021). Isolation and characterization of drought stress tolerant plant growth promoting rhizobacter from chilli crop. Bulletin of Scientific Research, 1(12), 1 https://doi.org/10.34256/bsr2111
  • Dezfuli, P.M., Sharif-Zadeh, F., Janmohammadi, M. (2008). Influence of priming techniques on seed germination behavior of maize inbred lines (Zea mays L.). Journal of Agricultural and Biological Science, 3(3): 22-25.
  • El-Saadony, M.T., Desoky, E.S.M., El-Tarabily, K.A., AbuQamar, S.F., & Saad, A.M. (2024). Exploiting the role of plant growth promoting rhizobacteria in reducing heavy metal toxicity of pepper (Capsicum annuum L.). Environmental Science and Pollution Research, 31(18), 27465-27484.
  • Elsakhawy, T.A., Fetyan, N., & Ghazi, A.A. (2019). The potential use of ectoine produced by a moderately halophilic bacteria Chromohalobacter salexigens KT989776 for enhancing germination and primary seedling of flax “Linum usitatissimum L.” under salinity conditions. Biotechnology Journal International, 23(3), 1-12. https://doi.org/10.9734/bji/2019/v23i330078
  • Ertekin, E.N., Ertekin, İ., & Bilgen, M. (2020). Effects of some heavy metals on germination and seedling growth of sorghum. KSU Journal of Agriculture and Nature, 23(6), 1608-1615. https://doi.org/10.18016/ksutarimdoga.v23i54846.722592
  • Fatnassi, I.C., Chiboub, M., Saadani, O., Jebara, M., Jebara, S. H. (2015). Impact of dual inoculation with Rhizobium and PGPR on growth and antioxidant status of Vicia faba L. under copper stress. Comptes Rendus Biologies, 338(4), 241-254. https://doi.org/10.1016/j.crvi.2015.02.001
  • Feil, S.B., Pii, Y., Valentinuzzi, F., Tiziani, R., Mimmo, T., Cesco, S. (2020). Copper toxicity affects phosphorus uptake mechanisms at molecular and physiological levels in Cucumis sativus plants. Plant Physiology and Biochemistry, 157, 138-147. https://doi.org/10.1016/j.plaphy.2020.10.023
  • Genç, S. & Soysal, M.İ. (2018). Parametri̇k ve parametri̇k olmayan çoklu karşilaştirma testleri̇. Black Sea Journal of Engineering and Science, 1(1), 18-27.
  • Ghorbel, S., Aldilami, M., Zouari-Mechichi, H., Mechichi, T., AlSherif, E. A. (2023). Isolation and characterization of a plant growth promoting rhizobacterium strain MD36 that promotes barley seedlings and growth under heavy metals stress. Biotechnology, 13(5), 145. https://doi.org/10.1007/s13205-023-03566-3
  • Gupta, R., Khan, F., Alqahtani, F. M., Hashem, M., & Ahmad, F. (2024). Plant growth–promoting Rhizobacteria (PGPR) assisted bioremediation of Heavy Metal Toxicity. Applied Biochemistry and Biotechnology, 196(5), 2928-2956. https://doi.org/10.1007/s12010-023-04545-3
  • Güler, M., 2024. Isolation of phosphate solubilizing bacteria from different medicinal aromatic plants and identification using MALDI TOF MS. International Journal of Agriculture Environment and Food Sciences 8(4): 824-834. https://doi.org/10.31015/jaefs.2024.4.11.
  • Halimursyadah, H., Syafruddin, S., Syamsuddin, S., & Sriwati, R. (2023). Screening of indigenous rhizobacteria isolates from patchouli rhizosphere producing HCN, siderophores and chitinolytic enzymes. In IOP Conference Series: Earth and Environmental Science (1183), 1-12096.
  • Hansda, A., Kumar, V., Anshumali. (2017). Cu-resistant Kocuria sp. CRB15: a potential PGPR isolated from the dry tailing of Rakha copper mine. Biotechnology, 7, 1-11. https://doi.org/10.1007/s13205-017-0757-y
  • Heinonsalo, J., Frey-Klett, P., Pierrat, J. C., Churin, J.L., Vairelles, D., Garbaye, J. (2004). Fate, tree growth effect and potential impact on soil microbial communities of mycorrhizal and bacterial inoculation in a forest plantation. Soil Biology and Biochemistry, 36(2), 211-216. https://doi.org/10.1016/j.soilbio.2003.09.007
  • Idder, B., Djibaoui, R., Reguieg Yassaad El Hocine, A., & Djoudi, A. (2019). Effects of inoculation with rhizospheric Pseudomonas on physiological responses in the broad bean (Vicia faba) grown under copper stress. In Exploring the Nexus of Geoecology, Geography, Geoarcheology and Geotourism: Advances and Treatments for Sustainable Development in Environmental Sciences and Agroforestry Research: Proceedings of the 1st Springer Conference of the Arabian Journal of Geosciences (CAJG-1), Tunisia 2018 (pp. 65-68). Springer International Publishing.
  • ISTA. (1993). International Rules for Seed Testing, International Seed Testing Association. Seed Science Technology, Zürich, Switzerland, 21, 289
  • Ju, W., Liu, L., Fang, L., Cui, Y., Duan, C., & Wu, H. (2019). Impact of co-inoculation with plant-growth-promoting rhizobacteria and rhizobium on the biochemical responses of alfalfa-soil system in copper contaminated soil. Ecotoxicology and Environmental Safety, 167, 218-226. https://doi.org/10.1016/j.ecoenv.2018.10.016
  • Kauser, S., Hussain, A., Ashraf, S., Fatima, G., Javaria, S., Abideen, Z.U., Korma, S.A. (2024). Flax seed (Linum usitatissimum L.); phytochemistry, pharmacological characteristics and functional food Treatments. Food Chemistry Advances, 4, 100573. https://doi.org/10.1016/j.focha.2023.100573
  • Ke, T., Guo, G., Liu, J., Zhang, C., Tao, Y., Wang, P., Chen, L. (2021). Improvement of the Cu and Cd phytostabilization efficiency of perennial ryegrass through the inoculation of three metal-resistant PGPR strains. Environmental Pollution, 271, 116314. https://doi.org/10.1016/j.envpol.2020.116314
  • Khan, K.S., Qadir, M.F., Ahmad, A., Naveed, M., Raza, T., Ditta, A. (2022). Efficacy of different endophytic bacterial strains in enhancing growth, yield, and physiological and biochemical attributes of Linum usitatissimum L. Journal of Soil Science and Plant Nutrition, 22(4), 4365-4376. https://doi.org/10.1007/s42729-022-01035-z
  • Khatami, S. A., Kasraie, P., Oveysi, M., Tohidi Moghadam, H. R., & Ghooshchi, F. (2023). Impacts of plant growth-promoting bacteria, compost and biodynamic compost preparations for alleviating the harmful effects of salinity on essential oil characteristics of lavender. Chemical and Biological Technologies in Agriculture, 10(1), 110. https://doi.org/10.1186/s40538-023-00485-6
  • Kumar, V., Pandita, S., Sidhu, G.P.S., Sharma, A., Khanna, K., Kaur, P., Setia, R. (2021). Copper bioavailability, uptake, toxicity and tolerance in plants: A comprehensive review. Chemosphere, 262, 127810. https://doi.org/10.1016/j.chemosphere.2020.127810
  • Kumral, F.E. & Şimşek, B. (2023). Bazı Bitkisel Yağların Dünya Genelindeki Durumu. Kadirli Uygulamalı Bilimler Fakültesi Dergisi, 3(2), 348-360.
  • Liu, A., Wang, W., Zheng, X., Chen, X., Fu, W., Wang, G., Guan, C. (2022). Improvement of the Cd and Zn phytoremediation efficiency of rice (Oryza sativa) through the inoculation of a metal-resistant PGPR strain. Chemosphere, 302, 134900. https://doi.org/10.1016/j.chemosphere.2022.134900
  • Madline, A., Benidire, L. & Boularbah, A. (2021). Alleviation of salinity and metal stress using plant growth-promoting rhizobacteria isolated from semiarid Moroccan copper-mine soils. Environmental Science and Pollution Research, 28, 67185-67202. https://doi.org/10.1007/s11356-021-15168-8
  • Manasa, K., Reddy, S., & Triveni, S. (2017). Characterization of potential PGPR and antagonistic activities of Rhizobium isolates from different rhizosphere soils. Journal of Pharmacognosy and Phytochemistry, 6(3), 51-54.
  • Mazhar, R., Ilyas, N., Arshad, M., Khalid, A., Hussain, M. (2020). Isolation of heavy metal-tolerant PGPR strains and amelioration of chromium effect in wheat in combination with biochar. Iranian Journal of Science and Technology, 44, 1-12. https://doi.org/10.1007/s40995-019-00800-7
  • Mediouni, C., Benzarti, O., Tray, B., Ghorbel, M. H., Jemal, F. (2006). Cadmium and copper toxicity for tomato seedlings. Agronomy for Sustainable Development, 26(4), 227-232. https://doi.org/10.1051/agro:2006008
  • Meena, R.K., Singh, R.K., Singh, N.P., Meena, S.K., Meena, V.S. (2015). Isolation of low temperature surviving plant growth–promoting rhizobacteria (PGPR) from pea (Pisum sativum L.) and documentation of their plant growth promoting traits. Biocatalysis and Agricultural Biotechnology, 4(4), 806-811. https://doi.org/10.1016/j.bcab.2015.08.006
  • Minuț, M., Diaconu, M., Roșca, M., Cozma, P., Bulgariu, L., Gavrilescu, M. (2022). Screening of Azotobacter, Bacillus and Pseudomonas species as plant growth-promoting bacteria. Processes, 11(1), 80. https://doi.org/10.3390/pr11010080
  • Mukhtar, S., Shahid, I., Mehnaz, S., Malik, K.A. (2017). Assessment of two carrier materials for phosphate solubilizing biofertilizers and their effect on growth of wheat (Triticum aestivum L.), Microbiological Research, 205(1), 107-117. https://doi.org/10.1016/j.micres.2017.08.011
  • Myresiotis, C.K., Vryzas, Z., Papadopoulou-Mourkidou, E. (2014). Enhanced root uptake of acibenzolar-S-methyl (ASM) by tomato plants inoculated with selected Bacillus plant growth-promoting rhizobacteria (PGPR). Applied Soil Ecology, 77(1), 26-33. https://doi.org/10.1016/j.apsoil.2014.01.005
  • Nazli, F., Mustafa, A., Ahmad, M., Hussain, A., Jamil, M., Wang, X., El-Esawi, M.A., (2020). A review on practical Treatment and potentials of phytohormone-producing plant growth-promoting rhizobacteria for inducing heavy metal tolerance in crops. Sustainability, 12(21), 9056. https://doi.org/10.3390/su12219056
  • Omer, A.M., Osman, M.S., Badawy, A.A. (2022). Inoculation with Azospirillum brasilense and/or Pseudomonas geniculata reinforces flax (Linum usitatissimum) growth by improving physiological activities under saline soil conditions. Botanical Studies, 63(1), 15 https://doi.org/10.1186/s40529-022-00345-w
  • Öksel, C., Balkan, A., Bilgin, O., Mirik, M., Başer, İ. (2022). Investigation of the effect of PGPR on yield and some yield components in winter wheat (Triticum aestivum L.). Turkish Journal of Field Crops, 27(1), 127-133. https://doi.org/10.17557/tjfc.1019160
  • Pandey, S., Ghosh, P. K., Ghosh, S., De, T. K., Maiti, T.K. (2013). Role of heavy metal resistant Ochrobactrum sp. and Bacillus spp. strains in bioremediation of a rice cultivar and their PGPR like activities. Journal of Microbiology, 51, 11-17. https://doi.org/10.1007/s12275-013-2330-7
  • Park, M., Kim, C., Yang, J., Lee, H., Shin, W., Kim, S., Sa, T. (2005). Isolation and characterization of diazotrophic growth promoting bacteria from rhizosphere of agricultural crops of Korea. Microbiological Research, 160(2), 127-133. https://doi.org/10.1016/j.micres.2004.10.003
  • Patel, P.R., Shaikh, S.S., & Sayyed, R.Z. (2016). Dynamism of PGPR in bioremediation and plant growth promotion in heavy metal contaminated soil. Indian Journal of Experimental Biology, 54(4), 286-290.
  • Pena, L.B., Azpilicueta, C.E., Gallego, S.M. (2011). Sunflower cotyledons cope with copper stress by inducing catalase subunits less sensitive to oxidation. Journal of Trace Elements in Medicine and Biology, 25(3), 125-129. https://doi.org/10.1016/j.jtemb.2011.05.001
  • Pikovskaya, R. (1948). Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologiya 17: 362–370. Plant Soil, 287, 77-84.
  • Pordel, F., Pour, A.H., Çakmakçı, R. (2019). Buğdayda (Triticum aestivum L.) Erken Alüminyum Stresine Karşı Bakteri Uygulamalarının Etkileri. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 50(1), 57-65. https://doi.org/10.17097/ataunizfd.431400
  • Prajakta, B.M., Suvarna, P.P., Raghvendra, S.P., & Alok, R.R. (2019). Potential biocontrol and superlative plant growth promoting activity of indigenous Bacillus mojavensis PB-35 (R11) of soybean (Glycine max) rhizosphere. Applied Sciences, 1(10), 1143. https://doi.org/10.1007/s42452-019-1149-1
  • Rawat, P., Das, S., Shankhdhar, D., Shankhdhar, S.C. (2021). Phosphate-solubilizing microorganisms: mechanism and their role in phosphate solubilization and uptake. Journal of Soil Science and Plant Nutrition, 21(1), 49-68. https://doi.org/10.1007/s42729-020-00342-7
  • Roychowdhury, R., Qaiser, T. F., Mukherjee, P., & Roy, M. (2019). Isolation and characterization of a Pseudomonas aeruginosa strain PGP for plant growth promotion. Proceedings of the national academy of sciences, India section b: biological sciences, 89, 353-360. https://doi.org/10.1007/s40011-017-0946-9
  • Qingwei, Z., Lushi, T., Yu, Z., Yu, S., Wanting, W., Jiangchuan, W., & Bilal, M. (2023). Isolation and characterization of phosphate-solubilizing bacteria from rhizosphere of poplar on road verge and their antagonistic potential against various phytopathogens. BMC Microbiology, 23(1), 221. https://doi.org/10.1186/s12866-023-02953-3
  • Quesssaoui, R., Bouharroud, R., Amarraque, A., Ajerrar, A., Mayad, E. H., Chebli, B., & Walters, A. S. (2017). Ecological applications of Pseudomonas as a biopesticide to control two-spotted mite Tetranychus urticae: chitinase and HCN production. Journal of Plant Protection Research, 57(4).
  • Reetha, S., Bhuvaneswari, G., Thamizhiniyan, P. & Mycin T.R. (2014). Isolation of indole acetic acid (IAA) producing rhizobacteria of Pseudomonas fluorescens and Bacillus subtilis and enhance growth of onion (Allim cepa L.). International Journal of Current Microbiology and Applied Sciences, 3(2), 568-574. https://doi.org/10.1088/1755-1315/572/1/012025
  • Rizvi, A., & Khan, M.S. (2017). Biotoxic impact of heavy metals on growth, oxidative stress and morphological changes in root structure of wheat (Triticum aestivum L.) and stress alleviation by Pseudomonas aeruginosa strain CPSB1. Chemosphere, 185, 942-952. https://doi.org/10.1016/j.chemosphere.2017.07.088
  • Rizvi, A., Ahmed, B., Zaidi, A., & Khan, M. S. (2020). Biosorption of heavy metals by dry biomass of metal tolerant bacterial biosorbents: an efficient metal clean-up strategy. Environmental monitoring and assessment, 192, 1-21. https://doi.org/10.1080/03601234.2017.1359049
  • Sarwar, M. & Kremer, R.J. (1995). Determination of bacterially derived auxins using a microplate method. Letters in Applied Microbiology, 20(5), 282-285
  • Schoffer, J.T., Sauvé, S., Neaman, A., Ginocchio, R. (2020). Role of leaf litter on the incorporation of copper-containing pesticides into soils under fruit production: A review. Journal of Soil Science and Plant Nutrition, 20, 990-1000. https://doi.org/10.1007/s42729-020-00186-1
  • Sfaxi-Bousbih, A., Chaoui, A., El Ferjani, E. (2010). Copper affects the cotyledonary carbohydrate status during the germination of bean seed. Biological Trace Element Research, 137, 110-116. https://doi.org/10.1007/s12011-009-8556-x
  • Shah, A., Nazari, M., Antar, M., Msimbira, L. A., Naamala, J., Lyu, D., & Smith, D. L. (2021). PGPR in agriculture: A sustainable approach to increasing climate change resilience. Frontiers in Sustainable Food Systems, 5, 667546
  • Singh, S., Kumar, V., Sidhu, G. K., Datta, S., Dhanjal, D. S., Koul, B., Singh, J. (2019). Plant growth promoting rhizobacteria from heavy metal contaminated soil promote growth attributes of Pisum sativum L. Biocatalysis and Agricultural Biotechnology, 17,665-671. https://doi.org/10.1016/j.bcab.2019.01.035
  • Singh, P., Singh, R. K., Li, H. B., Guo, D. J., Sharma, A., Verma, K. K., & Li, Y.R. (2023). Nitrogen fixation and phytohormone stimulation of sugarcane plant through plant growth promoting diazotrophic Pseudomonas. Biotechnology and Genetic Engineering Reviews, 1-21. https://doi.org/10.1080/02648725.2023.2177814
  • Sivri, G.T., & Öksüz, Ö. (2019). Identification of Propionibacterium spp. isolated from mihaliç cheeses by MALDI-TOF MS. Tekirdağ Ziraat Fakültesi Dergisi, 16(2), 244-250. https://doi.org/10.33462/jotaf.526431
  • Solntceva, V., Kostrzewa, M., & Larrouy-Maumus, G. (2021). Detection of species-specific lipids by routine MALDI TOF mass spectrometry to unlock the challenges of microbial identification and antimicrobial susceptibility testing. Frontiers in Cellular and Infection Microbiology, 10, 621452. https://doi.org/10.3389/fcimb.2020.621452
  • Soudek, P., Katrušáková, A., Sedláček, L., Petrová, Š., Kočí, V., Maršík, P., & Vaněk, T. (2010). Effect of heavy metals on inhibition of root elongation in 23 cultivars of flax (Linum usitatissimum L.). Archives of Environmental Contamination and Toxicology, 59, 194-203. https://doi.org/10.1007/s00244-010-9480-y
  • Stîngu, C.S., Rodloff, A.C., Jentsch, H., Schaumann, R., Eschrich, K. (2008). Rapid identification of oral anaerobic bacteria cultivated from subgingival biofilm by MALDI‐TOF‐MS. Oral Microbiology and Immunology, 23(5), 372-376. https://doi.org/10.1111/j.1399-302x.2008.00438.x
  • Ruyters, S., Salaets, P., Oorts, K., Smolders, E. (2013). Copper toxicity in soils under established vineyards in Europe: a survey. Science of the Total Environment, 443, 470-477. https://doi.org/10.1016/j.scitotenv.2012.11.001
  • Ünlü, E., Şekerci, A.D., Yılmaz, S., Yetişir, H. (2023). Field Trial of PGPR, Bacillus megaterium E-U2-1, on Some Vegetable Species. Journal of Applied Biological Sciences, 17(1), 125-137.
  • Vega-Castano, S., Ferreira, L., González-Ávila, M., Sánchez-Juanes, F., García-García, M. I., García-Sánchez, J.E., Munoz-Bellido, J.L. (2012). Eficacia de la espectrometría de masas MALDI-TOF en la identificación de bacterias anaerobias. Enfermedades Infecciosas Microbiología Clínica, 30(10), 597-601. https://doi.org/10.1016/j.eimc.2012.03.002
  • Widawati, S. & Suliasih. (2018). The effect of plant growth promoting rhizobacteria (PGPR) on germination and seedling growth of Sorghum bicolor L. Moench. In IOP Conference Series: Earth and Environmental Science 166, 12-22. https://doi.org/10.1088/1755-1315/166/1/012022
  • Yıldırım, E., Ekinci, M., Dursun, A. and Karagöz, K. (2015). Plant growth-promoting rhizobacteria improved seedling growth and quality of cucumber (Cucumis sativus L.) International Chemical, Food and Environment Engineering (11),12-68 https://doi.org/10.17758/iaast.a0115068
  • Zahroya, I. U., Mubarik, N. R., & Tjahjoleksono, A. (2020). Isolation and characterization of indole-3-acetic acid producing bacteria from red onion rhizosphere. Earth and Environmental Science (457),1, 12-46. https://doi.org/10.1088/1755-1315/457/1/012046
  • Zaidi, S., Usmani, S., Singh, B. R., Musarrat, J. (2006). Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere, 64(6), 991-997. https://doi.org/10.1016/j.chemosphere.2005.12.057
  • Zainab, N., Din, B.U., Javed, M.T., Afridi, M.S., Mukhtar, T., Kamran, M.A., Chaudhary, H.J. (2020). Deciphering metal toxicity responses of flax (Linum usitatissimum L.) with exopolysaccharide and ACC-deaminase producing bacteria in industrially contaminated soils. Plant Physiology and Biochemistry, 152, 90-99. https://doi.org/10.1016/j.plaphy.2020.04.039
  • Zhu, Y., Wang, Y., He, X., Li, B., Du, S. (2023). Plant growth-promoting rhizobacteria: A good companion for heavy metal phytoremediation. Chemosphere, 139475. https://doi.org/10.1016/j.chemosphere.2023.139475

Effect of flax rhizobacteria on germination and seedling growth under copper toxicity

Yıl 2025, Cilt: 9 Sayı: 2, 477 - 492, 26.06.2025
https://doi.org/10.31015/2025.2.21

Öz

Plant growth promoting rhizobacteria (PGPR) supports plant growth by decreasing heavy metal levels in soil through methods that alter metal pathways and convert toxins into safe forms. Five rhizobacterial isolates (FLX-1, FLX-2, FLX-3, FLX-4, and FLX-5) isolated from flax rhizosphere were identified using MALDI-TOF-MS techniques based on morphology, biochemistry, and plant growth-promoting properties. Four isolates (FLX-1, FLX-2, FLX-3, FLX-5) capable of fixing nitrogen, four (FLX-1, FLX-3, FLX-4, FLX-5) dissolving inorganic phosphate, and three (FLX-2, FLX-4, FLX-5) producing IAA and HCN. Additionally, in this study, the effects of 5 different rhizobacteria and copper (CuSO4) doses (0, 5, 10, 15, and 20 mM) on growth and development parameters of flax seeds were determined under fully controlled climate chambers. Moreover, Different rhizobacteria treatments significantly improved growth and development parameters in flax seed compared to the control group. It was observed that increasing copper doses resulted in a significant decrease in parameters such as germination rate, mean germination time, germination power index, root length, and shoot length in bacterial treatments. When evaluating the responses of different rhizobacteria treatments to copper heavy metal in flax seed germination, it was determined that the treatment of Pseudomonas chlororaphis FLX-5 yielded better results compared to other treatments and was effective in reducing the negative effects of copper in terms of the tested germination characteristics. In conclusion, the current study suggests that Pseudomonas chlororaphis FLX-5 may efficiently be used in tolerating copper toxicity, indicating that further research is needed in this area.

Kaynakça

  • Abbaszadeh-Dahaji, P., Atajan, F.A., Omidvari, M., Tahan, V., Kariman, K. (2021). Mitigation of copper stress in maize (Zea mays) and sunflower (Helianthus annuus) plants by copper-resistant Pseudomonas strains. Current Microbiology, 78(1), 1335-1343. https://doi.org/10.1007/s00284-021-02408-w
  • Abdel Latef, A.A.H., Zaid, A., Abo-Baker, A.B.A.E., Salem, W., Abu Alhmad, M.F. (2020). Mitigation of copper stress in maize by inoculation with Paenibacillus polymyxa and Bacillus circulans. Plants, 9(11), 1513. https://doi.org/10.3390/plants9111513
  • Afa, M., Sadimantara, GR., Rahni, NM. & Sutariati G.A.K. (2020). Isolation and characterization of rhizobacteria from local shallots rhizosphere as promoting growth of shallot (Allium ascalonicum L.). International Journal of Scientific & Technology Research 9(3), 322-833.
  • Ahmad, F., Ahmad, I & Khan, M.S. (2008). Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiology Research 163(2), 173-181. https://doi.org/10.1016/j.micres.2006.04.001
  • Aliyat, F. Z., Maldani, M., El Guilli, M., Nassiri, L., & Ibijbijen, J. (2022). Phosphate-solubilizing bacteria isolated from phosphate solid sludge and their ability to solubilize three inorganic phosphate forms: Calcium, iron, and aluminum phosphates. Microorganisms, 10(5), 980. https://doi.org/10.3390/microorganisms10050980
  • Alnefai, M.H., Metwali, E.M., Almaghrabi, O.A., Abdelmoneim, T.S. (2020). Biological Studies on the Effect of Plant Growth Promoting Rhizobacteria on Tomato (Solanum lycopersicum) Plants. Journal of American Science,16(2), 74-81.
  • Amri, M., Rjeibi, M. R., Gatrouni, M., Mateus, D. M., Asses, N., Pinho, H. J., & Abbes, C. (2023). Isolation, identification, and characterization of phosphate-solubilizing bacteria from Tunisian soils. Microorganisms, 11(3), 783. https://doi.org/10.3390/microorganisms11030783
  • Azeez, M.O., Adesanwo, O.O., Adepetu, J.A. (2015). Effect of Copper (Cu) Treatment on soil available nutrients and uptake. African Journal of Agricultural Research, 10(5), 359-364. https://doi.org/10.5897/ajar2014.9010
  • Bajpai, A.B., Dheer, P., Sharma, M. D., Rayal, R., Rautela, I. (2021). Influence of Heavy Metals on Seed Germination, Shoot Length, Root Length and the Profiling of Antioxidant Activity of Linum usitatissimum L. Journal of Mountain Research, 16(3), 215-228. https://doi.org/10.51220/jmr.v16i3.23
  • Bakker, AW. & Schippers, B. (1987). Microbial cyanides production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp. mediated plant growth stimulation. Soil Biology and Biochemistry, 19(4), 451-457. https://doi.org/10.1016/0038-0717(87)90037-x
  • Ballabio, C., Panagos, P., Lugato, E., Huang, J. H., Orgiazzi, A., Jones, A., Montanarella, L. (2018). Copper distribution in European topsoils: An assessment based on Lucas soil survey. Science of the Total Environment, 636: 282-298. https://doi.org/10.1016/j.scitotenv.2018.04.268
  • Bashan, Y., Holguin, G., & Lifshitz, R. (1993). Isolation and characterization of plant growth-promoting rhizobacteria. Methods in Plant Molecular Biology and Biotechnology, 331-345.
  • Blanco-Vargas, A., Rodríguez-Gacha, L. M., Sánchez-Castro, N., Garzón-Jaramillo, R., Pedroza-Camacho, L. D., Poutou-Piñales, R.A., & Pedroza-Rodríguez, A.M. (2020). Phosphate-solubilizing Pseudomonas sp., and Serratia sp., co-culture for Allium cepa L. growth promotion. Heliyon, 6(10). https://doi.org/10.1016/j.heliyon.2020.e05218
  • Çelikten, M., & Bozkurt, İ.A. (2018). Buğday kök bölgesinden izole edilen bakterilerin buğday gelişimine olan etkilerinin belirlenmesi. Mustafa Kemal Üniversitesi Ziraat Fakültesi Dergisi, 23(1), 33-48.
  • Deshwal, V.K. & Kumar, P. (2013). Production of plant growth promoting substance by Pseudomonads, Journal of Academia and Industrial Research 2(4), 221-225.
  • Devanathan, J., Thiripurasundari, T., Selvam, K., Selvaraj, S., Ramadass, L. (2021). Isolation and characterization of drought stress tolerant plant growth promoting rhizobacter from chilli crop. Bulletin of Scientific Research, 1(12), 1 https://doi.org/10.34256/bsr2111
  • Dezfuli, P.M., Sharif-Zadeh, F., Janmohammadi, M. (2008). Influence of priming techniques on seed germination behavior of maize inbred lines (Zea mays L.). Journal of Agricultural and Biological Science, 3(3): 22-25.
  • El-Saadony, M.T., Desoky, E.S.M., El-Tarabily, K.A., AbuQamar, S.F., & Saad, A.M. (2024). Exploiting the role of plant growth promoting rhizobacteria in reducing heavy metal toxicity of pepper (Capsicum annuum L.). Environmental Science and Pollution Research, 31(18), 27465-27484.
  • Elsakhawy, T.A., Fetyan, N., & Ghazi, A.A. (2019). The potential use of ectoine produced by a moderately halophilic bacteria Chromohalobacter salexigens KT989776 for enhancing germination and primary seedling of flax “Linum usitatissimum L.” under salinity conditions. Biotechnology Journal International, 23(3), 1-12. https://doi.org/10.9734/bji/2019/v23i330078
  • Ertekin, E.N., Ertekin, İ., & Bilgen, M. (2020). Effects of some heavy metals on germination and seedling growth of sorghum. KSU Journal of Agriculture and Nature, 23(6), 1608-1615. https://doi.org/10.18016/ksutarimdoga.v23i54846.722592
  • Fatnassi, I.C., Chiboub, M., Saadani, O., Jebara, M., Jebara, S. H. (2015). Impact of dual inoculation with Rhizobium and PGPR on growth and antioxidant status of Vicia faba L. under copper stress. Comptes Rendus Biologies, 338(4), 241-254. https://doi.org/10.1016/j.crvi.2015.02.001
  • Feil, S.B., Pii, Y., Valentinuzzi, F., Tiziani, R., Mimmo, T., Cesco, S. (2020). Copper toxicity affects phosphorus uptake mechanisms at molecular and physiological levels in Cucumis sativus plants. Plant Physiology and Biochemistry, 157, 138-147. https://doi.org/10.1016/j.plaphy.2020.10.023
  • Genç, S. & Soysal, M.İ. (2018). Parametri̇k ve parametri̇k olmayan çoklu karşilaştirma testleri̇. Black Sea Journal of Engineering and Science, 1(1), 18-27.
  • Ghorbel, S., Aldilami, M., Zouari-Mechichi, H., Mechichi, T., AlSherif, E. A. (2023). Isolation and characterization of a plant growth promoting rhizobacterium strain MD36 that promotes barley seedlings and growth under heavy metals stress. Biotechnology, 13(5), 145. https://doi.org/10.1007/s13205-023-03566-3
  • Gupta, R., Khan, F., Alqahtani, F. M., Hashem, M., & Ahmad, F. (2024). Plant growth–promoting Rhizobacteria (PGPR) assisted bioremediation of Heavy Metal Toxicity. Applied Biochemistry and Biotechnology, 196(5), 2928-2956. https://doi.org/10.1007/s12010-023-04545-3
  • Güler, M., 2024. Isolation of phosphate solubilizing bacteria from different medicinal aromatic plants and identification using MALDI TOF MS. International Journal of Agriculture Environment and Food Sciences 8(4): 824-834. https://doi.org/10.31015/jaefs.2024.4.11.
  • Halimursyadah, H., Syafruddin, S., Syamsuddin, S., & Sriwati, R. (2023). Screening of indigenous rhizobacteria isolates from patchouli rhizosphere producing HCN, siderophores and chitinolytic enzymes. In IOP Conference Series: Earth and Environmental Science (1183), 1-12096.
  • Hansda, A., Kumar, V., Anshumali. (2017). Cu-resistant Kocuria sp. CRB15: a potential PGPR isolated from the dry tailing of Rakha copper mine. Biotechnology, 7, 1-11. https://doi.org/10.1007/s13205-017-0757-y
  • Heinonsalo, J., Frey-Klett, P., Pierrat, J. C., Churin, J.L., Vairelles, D., Garbaye, J. (2004). Fate, tree growth effect and potential impact on soil microbial communities of mycorrhizal and bacterial inoculation in a forest plantation. Soil Biology and Biochemistry, 36(2), 211-216. https://doi.org/10.1016/j.soilbio.2003.09.007
  • Idder, B., Djibaoui, R., Reguieg Yassaad El Hocine, A., & Djoudi, A. (2019). Effects of inoculation with rhizospheric Pseudomonas on physiological responses in the broad bean (Vicia faba) grown under copper stress. In Exploring the Nexus of Geoecology, Geography, Geoarcheology and Geotourism: Advances and Treatments for Sustainable Development in Environmental Sciences and Agroforestry Research: Proceedings of the 1st Springer Conference of the Arabian Journal of Geosciences (CAJG-1), Tunisia 2018 (pp. 65-68). Springer International Publishing.
  • ISTA. (1993). International Rules for Seed Testing, International Seed Testing Association. Seed Science Technology, Zürich, Switzerland, 21, 289
  • Ju, W., Liu, L., Fang, L., Cui, Y., Duan, C., & Wu, H. (2019). Impact of co-inoculation with plant-growth-promoting rhizobacteria and rhizobium on the biochemical responses of alfalfa-soil system in copper contaminated soil. Ecotoxicology and Environmental Safety, 167, 218-226. https://doi.org/10.1016/j.ecoenv.2018.10.016
  • Kauser, S., Hussain, A., Ashraf, S., Fatima, G., Javaria, S., Abideen, Z.U., Korma, S.A. (2024). Flax seed (Linum usitatissimum L.); phytochemistry, pharmacological characteristics and functional food Treatments. Food Chemistry Advances, 4, 100573. https://doi.org/10.1016/j.focha.2023.100573
  • Ke, T., Guo, G., Liu, J., Zhang, C., Tao, Y., Wang, P., Chen, L. (2021). Improvement of the Cu and Cd phytostabilization efficiency of perennial ryegrass through the inoculation of three metal-resistant PGPR strains. Environmental Pollution, 271, 116314. https://doi.org/10.1016/j.envpol.2020.116314
  • Khan, K.S., Qadir, M.F., Ahmad, A., Naveed, M., Raza, T., Ditta, A. (2022). Efficacy of different endophytic bacterial strains in enhancing growth, yield, and physiological and biochemical attributes of Linum usitatissimum L. Journal of Soil Science and Plant Nutrition, 22(4), 4365-4376. https://doi.org/10.1007/s42729-022-01035-z
  • Khatami, S. A., Kasraie, P., Oveysi, M., Tohidi Moghadam, H. R., & Ghooshchi, F. (2023). Impacts of plant growth-promoting bacteria, compost and biodynamic compost preparations for alleviating the harmful effects of salinity on essential oil characteristics of lavender. Chemical and Biological Technologies in Agriculture, 10(1), 110. https://doi.org/10.1186/s40538-023-00485-6
  • Kumar, V., Pandita, S., Sidhu, G.P.S., Sharma, A., Khanna, K., Kaur, P., Setia, R. (2021). Copper bioavailability, uptake, toxicity and tolerance in plants: A comprehensive review. Chemosphere, 262, 127810. https://doi.org/10.1016/j.chemosphere.2020.127810
  • Kumral, F.E. & Şimşek, B. (2023). Bazı Bitkisel Yağların Dünya Genelindeki Durumu. Kadirli Uygulamalı Bilimler Fakültesi Dergisi, 3(2), 348-360.
  • Liu, A., Wang, W., Zheng, X., Chen, X., Fu, W., Wang, G., Guan, C. (2022). Improvement of the Cd and Zn phytoremediation efficiency of rice (Oryza sativa) through the inoculation of a metal-resistant PGPR strain. Chemosphere, 302, 134900. https://doi.org/10.1016/j.chemosphere.2022.134900
  • Madline, A., Benidire, L. & Boularbah, A. (2021). Alleviation of salinity and metal stress using plant growth-promoting rhizobacteria isolated from semiarid Moroccan copper-mine soils. Environmental Science and Pollution Research, 28, 67185-67202. https://doi.org/10.1007/s11356-021-15168-8
  • Manasa, K., Reddy, S., & Triveni, S. (2017). Characterization of potential PGPR and antagonistic activities of Rhizobium isolates from different rhizosphere soils. Journal of Pharmacognosy and Phytochemistry, 6(3), 51-54.
  • Mazhar, R., Ilyas, N., Arshad, M., Khalid, A., Hussain, M. (2020). Isolation of heavy metal-tolerant PGPR strains and amelioration of chromium effect in wheat in combination with biochar. Iranian Journal of Science and Technology, 44, 1-12. https://doi.org/10.1007/s40995-019-00800-7
  • Mediouni, C., Benzarti, O., Tray, B., Ghorbel, M. H., Jemal, F. (2006). Cadmium and copper toxicity for tomato seedlings. Agronomy for Sustainable Development, 26(4), 227-232. https://doi.org/10.1051/agro:2006008
  • Meena, R.K., Singh, R.K., Singh, N.P., Meena, S.K., Meena, V.S. (2015). Isolation of low temperature surviving plant growth–promoting rhizobacteria (PGPR) from pea (Pisum sativum L.) and documentation of their plant growth promoting traits. Biocatalysis and Agricultural Biotechnology, 4(4), 806-811. https://doi.org/10.1016/j.bcab.2015.08.006
  • Minuț, M., Diaconu, M., Roșca, M., Cozma, P., Bulgariu, L., Gavrilescu, M. (2022). Screening of Azotobacter, Bacillus and Pseudomonas species as plant growth-promoting bacteria. Processes, 11(1), 80. https://doi.org/10.3390/pr11010080
  • Mukhtar, S., Shahid, I., Mehnaz, S., Malik, K.A. (2017). Assessment of two carrier materials for phosphate solubilizing biofertilizers and their effect on growth of wheat (Triticum aestivum L.), Microbiological Research, 205(1), 107-117. https://doi.org/10.1016/j.micres.2017.08.011
  • Myresiotis, C.K., Vryzas, Z., Papadopoulou-Mourkidou, E. (2014). Enhanced root uptake of acibenzolar-S-methyl (ASM) by tomato plants inoculated with selected Bacillus plant growth-promoting rhizobacteria (PGPR). Applied Soil Ecology, 77(1), 26-33. https://doi.org/10.1016/j.apsoil.2014.01.005
  • Nazli, F., Mustafa, A., Ahmad, M., Hussain, A., Jamil, M., Wang, X., El-Esawi, M.A., (2020). A review on practical Treatment and potentials of phytohormone-producing plant growth-promoting rhizobacteria for inducing heavy metal tolerance in crops. Sustainability, 12(21), 9056. https://doi.org/10.3390/su12219056
  • Omer, A.M., Osman, M.S., Badawy, A.A. (2022). Inoculation with Azospirillum brasilense and/or Pseudomonas geniculata reinforces flax (Linum usitatissimum) growth by improving physiological activities under saline soil conditions. Botanical Studies, 63(1), 15 https://doi.org/10.1186/s40529-022-00345-w
  • Öksel, C., Balkan, A., Bilgin, O., Mirik, M., Başer, İ. (2022). Investigation of the effect of PGPR on yield and some yield components in winter wheat (Triticum aestivum L.). Turkish Journal of Field Crops, 27(1), 127-133. https://doi.org/10.17557/tjfc.1019160
  • Pandey, S., Ghosh, P. K., Ghosh, S., De, T. K., Maiti, T.K. (2013). Role of heavy metal resistant Ochrobactrum sp. and Bacillus spp. strains in bioremediation of a rice cultivar and their PGPR like activities. Journal of Microbiology, 51, 11-17. https://doi.org/10.1007/s12275-013-2330-7
  • Park, M., Kim, C., Yang, J., Lee, H., Shin, W., Kim, S., Sa, T. (2005). Isolation and characterization of diazotrophic growth promoting bacteria from rhizosphere of agricultural crops of Korea. Microbiological Research, 160(2), 127-133. https://doi.org/10.1016/j.micres.2004.10.003
  • Patel, P.R., Shaikh, S.S., & Sayyed, R.Z. (2016). Dynamism of PGPR in bioremediation and plant growth promotion in heavy metal contaminated soil. Indian Journal of Experimental Biology, 54(4), 286-290.
  • Pena, L.B., Azpilicueta, C.E., Gallego, S.M. (2011). Sunflower cotyledons cope with copper stress by inducing catalase subunits less sensitive to oxidation. Journal of Trace Elements in Medicine and Biology, 25(3), 125-129. https://doi.org/10.1016/j.jtemb.2011.05.001
  • Pikovskaya, R. (1948). Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologiya 17: 362–370. Plant Soil, 287, 77-84.
  • Pordel, F., Pour, A.H., Çakmakçı, R. (2019). Buğdayda (Triticum aestivum L.) Erken Alüminyum Stresine Karşı Bakteri Uygulamalarının Etkileri. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 50(1), 57-65. https://doi.org/10.17097/ataunizfd.431400
  • Prajakta, B.M., Suvarna, P.P., Raghvendra, S.P., & Alok, R.R. (2019). Potential biocontrol and superlative plant growth promoting activity of indigenous Bacillus mojavensis PB-35 (R11) of soybean (Glycine max) rhizosphere. Applied Sciences, 1(10), 1143. https://doi.org/10.1007/s42452-019-1149-1
  • Rawat, P., Das, S., Shankhdhar, D., Shankhdhar, S.C. (2021). Phosphate-solubilizing microorganisms: mechanism and their role in phosphate solubilization and uptake. Journal of Soil Science and Plant Nutrition, 21(1), 49-68. https://doi.org/10.1007/s42729-020-00342-7
  • Roychowdhury, R., Qaiser, T. F., Mukherjee, P., & Roy, M. (2019). Isolation and characterization of a Pseudomonas aeruginosa strain PGP for plant growth promotion. Proceedings of the national academy of sciences, India section b: biological sciences, 89, 353-360. https://doi.org/10.1007/s40011-017-0946-9
  • Qingwei, Z., Lushi, T., Yu, Z., Yu, S., Wanting, W., Jiangchuan, W., & Bilal, M. (2023). Isolation and characterization of phosphate-solubilizing bacteria from rhizosphere of poplar on road verge and their antagonistic potential against various phytopathogens. BMC Microbiology, 23(1), 221. https://doi.org/10.1186/s12866-023-02953-3
  • Quesssaoui, R., Bouharroud, R., Amarraque, A., Ajerrar, A., Mayad, E. H., Chebli, B., & Walters, A. S. (2017). Ecological applications of Pseudomonas as a biopesticide to control two-spotted mite Tetranychus urticae: chitinase and HCN production. Journal of Plant Protection Research, 57(4).
  • Reetha, S., Bhuvaneswari, G., Thamizhiniyan, P. & Mycin T.R. (2014). Isolation of indole acetic acid (IAA) producing rhizobacteria of Pseudomonas fluorescens and Bacillus subtilis and enhance growth of onion (Allim cepa L.). International Journal of Current Microbiology and Applied Sciences, 3(2), 568-574. https://doi.org/10.1088/1755-1315/572/1/012025
  • Rizvi, A., & Khan, M.S. (2017). Biotoxic impact of heavy metals on growth, oxidative stress and morphological changes in root structure of wheat (Triticum aestivum L.) and stress alleviation by Pseudomonas aeruginosa strain CPSB1. Chemosphere, 185, 942-952. https://doi.org/10.1016/j.chemosphere.2017.07.088
  • Rizvi, A., Ahmed, B., Zaidi, A., & Khan, M. S. (2020). Biosorption of heavy metals by dry biomass of metal tolerant bacterial biosorbents: an efficient metal clean-up strategy. Environmental monitoring and assessment, 192, 1-21. https://doi.org/10.1080/03601234.2017.1359049
  • Sarwar, M. & Kremer, R.J. (1995). Determination of bacterially derived auxins using a microplate method. Letters in Applied Microbiology, 20(5), 282-285
  • Schoffer, J.T., Sauvé, S., Neaman, A., Ginocchio, R. (2020). Role of leaf litter on the incorporation of copper-containing pesticides into soils under fruit production: A review. Journal of Soil Science and Plant Nutrition, 20, 990-1000. https://doi.org/10.1007/s42729-020-00186-1
  • Sfaxi-Bousbih, A., Chaoui, A., El Ferjani, E. (2010). Copper affects the cotyledonary carbohydrate status during the germination of bean seed. Biological Trace Element Research, 137, 110-116. https://doi.org/10.1007/s12011-009-8556-x
  • Shah, A., Nazari, M., Antar, M., Msimbira, L. A., Naamala, J., Lyu, D., & Smith, D. L. (2021). PGPR in agriculture: A sustainable approach to increasing climate change resilience. Frontiers in Sustainable Food Systems, 5, 667546
  • Singh, S., Kumar, V., Sidhu, G. K., Datta, S., Dhanjal, D. S., Koul, B., Singh, J. (2019). Plant growth promoting rhizobacteria from heavy metal contaminated soil promote growth attributes of Pisum sativum L. Biocatalysis and Agricultural Biotechnology, 17,665-671. https://doi.org/10.1016/j.bcab.2019.01.035
  • Singh, P., Singh, R. K., Li, H. B., Guo, D. J., Sharma, A., Verma, K. K., & Li, Y.R. (2023). Nitrogen fixation and phytohormone stimulation of sugarcane plant through plant growth promoting diazotrophic Pseudomonas. Biotechnology and Genetic Engineering Reviews, 1-21. https://doi.org/10.1080/02648725.2023.2177814
  • Sivri, G.T., & Öksüz, Ö. (2019). Identification of Propionibacterium spp. isolated from mihaliç cheeses by MALDI-TOF MS. Tekirdağ Ziraat Fakültesi Dergisi, 16(2), 244-250. https://doi.org/10.33462/jotaf.526431
  • Solntceva, V., Kostrzewa, M., & Larrouy-Maumus, G. (2021). Detection of species-specific lipids by routine MALDI TOF mass spectrometry to unlock the challenges of microbial identification and antimicrobial susceptibility testing. Frontiers in Cellular and Infection Microbiology, 10, 621452. https://doi.org/10.3389/fcimb.2020.621452
  • Soudek, P., Katrušáková, A., Sedláček, L., Petrová, Š., Kočí, V., Maršík, P., & Vaněk, T. (2010). Effect of heavy metals on inhibition of root elongation in 23 cultivars of flax (Linum usitatissimum L.). Archives of Environmental Contamination and Toxicology, 59, 194-203. https://doi.org/10.1007/s00244-010-9480-y
  • Stîngu, C.S., Rodloff, A.C., Jentsch, H., Schaumann, R., Eschrich, K. (2008). Rapid identification of oral anaerobic bacteria cultivated from subgingival biofilm by MALDI‐TOF‐MS. Oral Microbiology and Immunology, 23(5), 372-376. https://doi.org/10.1111/j.1399-302x.2008.00438.x
  • Ruyters, S., Salaets, P., Oorts, K., Smolders, E. (2013). Copper toxicity in soils under established vineyards in Europe: a survey. Science of the Total Environment, 443, 470-477. https://doi.org/10.1016/j.scitotenv.2012.11.001
  • Ünlü, E., Şekerci, A.D., Yılmaz, S., Yetişir, H. (2023). Field Trial of PGPR, Bacillus megaterium E-U2-1, on Some Vegetable Species. Journal of Applied Biological Sciences, 17(1), 125-137.
  • Vega-Castano, S., Ferreira, L., González-Ávila, M., Sánchez-Juanes, F., García-García, M. I., García-Sánchez, J.E., Munoz-Bellido, J.L. (2012). Eficacia de la espectrometría de masas MALDI-TOF en la identificación de bacterias anaerobias. Enfermedades Infecciosas Microbiología Clínica, 30(10), 597-601. https://doi.org/10.1016/j.eimc.2012.03.002
  • Widawati, S. & Suliasih. (2018). The effect of plant growth promoting rhizobacteria (PGPR) on germination and seedling growth of Sorghum bicolor L. Moench. In IOP Conference Series: Earth and Environmental Science 166, 12-22. https://doi.org/10.1088/1755-1315/166/1/012022
  • Yıldırım, E., Ekinci, M., Dursun, A. and Karagöz, K. (2015). Plant growth-promoting rhizobacteria improved seedling growth and quality of cucumber (Cucumis sativus L.) International Chemical, Food and Environment Engineering (11),12-68 https://doi.org/10.17758/iaast.a0115068
  • Zahroya, I. U., Mubarik, N. R., & Tjahjoleksono, A. (2020). Isolation and characterization of indole-3-acetic acid producing bacteria from red onion rhizosphere. Earth and Environmental Science (457),1, 12-46. https://doi.org/10.1088/1755-1315/457/1/012046
  • Zaidi, S., Usmani, S., Singh, B. R., Musarrat, J. (2006). Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere, 64(6), 991-997. https://doi.org/10.1016/j.chemosphere.2005.12.057
  • Zainab, N., Din, B.U., Javed, M.T., Afridi, M.S., Mukhtar, T., Kamran, M.A., Chaudhary, H.J. (2020). Deciphering metal toxicity responses of flax (Linum usitatissimum L.) with exopolysaccharide and ACC-deaminase producing bacteria in industrially contaminated soils. Plant Physiology and Biochemistry, 152, 90-99. https://doi.org/10.1016/j.plaphy.2020.04.039
  • Zhu, Y., Wang, Y., He, X., Li, B., Du, S. (2023). Plant growth-promoting rhizobacteria: A good companion for heavy metal phytoremediation. Chemosphere, 139475. https://doi.org/10.1016/j.chemosphere.2023.139475
Toplam 83 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Tarımda Bitki Bakteriolojisi, Toprak Mikrobiyolojisi
Bölüm Makaleler
Yazarlar

Murat Güler 0000-0002-3074-6458

Sancar Fatıh Ozcan 0000-0002-7398-6478

Burak Önol 0000-0003-3114-558X

Yayımlanma Tarihi 26 Haziran 2025
Gönderilme Tarihi 6 Mart 2025
Kabul Tarihi 12 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 9 Sayı: 2

Kaynak Göster

APA Güler, M., Ozcan, S. F., & Önol, B. (2025). Effect of flax rhizobacteria on germination and seedling growth under copper toxicity. International Journal of Agriculture Environment and Food Sciences, 9(2), 477-492. https://doi.org/10.31015/2025.2.21


The International Journal of Agriculture, Environment and Food Sciences content is licensed under a Creative Commons Attribution-NonCommercial (CC BY-NC) 4.0 International License which permits third parties to share and adapt the content for non-commercial purposes by giving the appropriate credit to the original work. Authors retain the copyright of their published work in the International Journal of Agriculture, Environment and Food Sciences. 

Web:  dergipark.org.tr/jaefs  E-mail: editor@jaefs.com WhatsApp: +90 850 309 59 27