Yıl 2025,
Cilt: 9 Sayı: 2, 583 - 598, 26.06.2025
Damla Yüksel Küskü
,
Hande Tahmaz Karaman
,
Birhan Kunter
Kaynakça
- Aazami, M. A., Maleki, M., Rasouli, F. & Gohari, G. (2023). Protective effects of chitosan based salicylic acid nanocomposite (CS-SA NCs) in grape (Vitis vinifera cv.'Sultana') under salinity stress. Scientific Reports, 13(1), 883. https://doi.org/10.1038/s41598-023-27618-z
- Abbasi, H., Jamil, M., Haq, A., Ali, S., Ahmad, R. & Malik, Z. (2016). Salt stress manifestation on plants, mechanism of salt tolerance and potassium role in alleviating it: a review. Zemdirbyste-Agriculure, 103, 229-238. https://doi.org/10.13080/z-a.2016.103.030
- Ahmad, P., Sarwat, M. & Sharma, S. (2008). Reactive oxygen species, antioxidants and signaling in plants. Journal of Plant Biology, 51 (3), 167 173. https://doi.org/10.1007/bf03030694
- Al-Abbassi, G. B., Al-Dihaimawi, A. J. & Al-Anzi, B. N. (2022). Effect of salicylic acid and putrescine on the ions content in ex vivo strawberry Fragaria ananassa branches under salinity stress. International Journal of Agricultural & Statistical Sciences, 18.
- Raghda'a Ali Al-Khafajy, D., AL-Taey, K. A. & AL-Mohammed, M. H. (2020). The impact of water quality, bio fertilizers and selenium spraying on some vegetative and flowering growth parameters of Calendula officinalis L. under salinity stress. International Journal of Agricultural and Statistical Sciences, 16, 1175-1180.
- Almagro, L., Calderón, A. A., Pedreño, M. A. & Ferrer, M. A. (2022). Differential response of phenol metabolism associated with antioxidative network in elicited grapevine suspension cultured cells under saline conditions. Antioxidants, 11(2), 388. https://doi.org/10.3390/antiox11020388
- Anjos, A. P. D., Oliveira, G. R. F., Mello, S. D. C., Silva, M. S. D., Gomes-Junior, F. G., Novembre, A. D. D. L. C. & Azevedo, R. A. (2020). Seed priming with seaweed extract mitigate heat stress in spinach: effect on germination, seedling growth and antioxidant capacity. Bragantia, 79(4), 502-511. https://doi.org/10.1590/1678-4499.20200127
- Apel, K. & Hirt, H. (2004). Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55(1), 373-399. https://doi.org/10.1146/annurev.arplant.55.031903.141701
- Asada, K. & Takahashi, M. (1987). ̍Production and scavenging of active oxygen in photosynthesis̍. In: Kyle, D.J., Osmund, C.D. and Arntzen, C.J. (Eds.), Photoinhibition. Elsevier Science Publishers, Amsterdam, pp. 227-287.
- Ashraf, M. (2009). Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnology Advances, 27: 84-93. https://doi.org/10.1016/j.biotechadv.2008.09.003
- Baroi, A.M., Popitiu, M., Fierascu, I., Sărdărescu, I.D. & Fierascu, R.C. (2022) Grapevine wastes: A rich source of antioxidants and other biologically active compounds. Antioxidants (Basel), 11(2):393. https://doi.org/10.3390/antiox11020393
- Chaves, M.M., Zarrouk, O., Francisco, R., Costa, J.M., Santos, T., Regalado, A.P., Rodrigues, M.L. & Lopes, C.M. (2010) Grapevineunder deficit irrigation: hints from physiological and molecular data. Annals of Botany, 105, 661-676. https://doi.org/10.1093/aob/mcq030
- Choudhury, F. K., Rivero, R. M., Blumwald, E. & Mittler, R. (2017). Reactive oxygen species, abiotic stress and stress combination. The Plant Journal, 90(5), 856-867. https://doi.org/10.1111/tpj.13299
- Cifre, J., Bota, J., Escalona, J. M., Medrano, H. & Flexas, J. (2005). Physiological tools for irrigation scheduling in grapevine (Vitis vinifera L.): an open gate to improve water-use efficiency?. Agriculture, Ecosystems & Environment, 106(2-3), 159-170. https://doi.org/10.1016/j.agee.2004.10.005
- Cramer, G. R., Ergül, A., Grimplet, J., Tillett, R. L., Tattersall, E. A. R., Bohlman, M. C., Vincent, D., Sonderegger, J., Evans, J., Osborne, C., Quilici, D., Schlauch, K. A., Schooley, D. A., & Cushman, J. C. (2006). Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Functional & Integrative Genomics, 7(2), 111–134. https://doi.org/10.1007/s10142-006-0039-y
- Cakmak, I., Strbac, D. & Marschner, H. (1993). Activities of hydrogen peroxide-scavenging enzymes in germinating wheat seeds. Journal of Experimental Botany, 44(1), 127-132. https://doi.org/10.1093/jxb/44.1.127
- Desoky, E. S. M., ElSayed, A. I., Merwad, A. R. M. & Rady, M. M. (2019). Stimulating antioxidant defenses, antioxidant gene expression, and salt tolerance in Pisum sativum seedling by pretreatment using licorice root extract (LRE) as an organic biostimulant. Plant Physiology and Biochemistry, 142, 292-302. https://doi.org/10.1016/j.plaphy.2019.07.020
- Demiral, T. & Türkan, I. (2005). Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environmental and Experimental Botany, 53(3), 247-257. https://doi.org/10.1016/j.envexpbot.2004.03.017
- De Pascale, S., Rouphael, Y. & Colla, G. (2017). Plant biostimulants: Innovative tool for enhancing plant nutrition in organic farming. European Journal of Horticultural Science, 82(6), 277-285. https://doi.org/10.17660/ejhs.2017/82.6.2
- Deng, L., Chen, L., Zhao, J. & Wang, R. (2021). Comparative analysis on environmental and economic performance of agricultural cooperatives and smallholder farmers: The case of grape production in Hebei, China. Plos One, 16(1), e0245981. https://doi.org/10.1371/journal.pone.0245981
- Du Jardin, P. (2015). Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae, 196, 3-14. https://doi.org/10.1016/j.scienta.2015.09.021
- El Boukhari, M. E. M., Barakate, M., Drissi, B., Bouhia, Y. & Lyamlouli, K. (2023). Seaweed extract biostimulants differentially act in mitigating drought stress on faba bean (Vicia faba L.). Journal of Plant Growth Regulation, 42(9), 5642-5652. https://doi.org/10.1007/s00344-023-10945-w
- Gajjar, P., Ismail, A., Islam, T., Darwish, A. G., Moniruzzaman, M., Abuslima, E., Dawood, A. S., El-Saady, A. M., Tsolova, V., El-Kereamy, A., Nick, P., Sherif, S. M., Abazinge, M. D. & El-Sharkawy, I. (2023). Physiological Comparison of Two Salt-Excluder Hybrid Grapevine Rootstocks under Salinity Reveals Different Adaptation Qualities. Plants, 12(18), 3247. https://doi.org/10.3390/plants12183247
- Gill, S. S. & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909-930. https://doi.org/10.1016/j.plaphy.2010.08.016
- Gong, H., Zhu, X., Chen, K., Wang, S. & Zhang, C. (2005). Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Science, 169(2), 313-321. https://doi.org/10.1016/j.plantsci.2005.02.023
- Hernández, J. A., Del Río, L. A. & Sevilla, F. (1994). Salt stress-induced changes in superoxide dismutase isozymes in leaves and mesophyll protoplasts from Vigna unguiculata (L.) Walp. New Phytologist, 126(1), 37-44. https://doi.org/10.1111/j.1469-8137.1994.tb07527.x
- Huo, Y.D. (2023) Effects of substrate quality on organic carbon mineralization, microbial community composition, and functional genes in coastal saline-alkali soils. Dissertation, Shandong Agricultural University. https://doi.org/1 0.2 7277/d.c nki.g sdnu. 2023. 000833
- Jaleel, C. A., Riadh, K., Gopi, R., Manivannan, P., Inès, J., Al-Juburi, H. J., Chang-Xing, Z., Hong-Bo, S. & Panneerselvam, R. (2009). Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints. Acta Physiologiae Plantarum, 31(3), 427–436. https://doi.org/10.1007/s11738-009-0275-6
- Jamalian, S., Gholami, M. & Esna-Ashari, M. (2013). Abscisic acid-mediated increase in leaf phenolic compounds, plant growth and yield is strawberry under different salt stress regimes. Theoretical and Experimental Plant Physiology, 25, 291-299.
- Karaman, H. T., Küskü, D. Y. & Kunter, B. (2024). Determination of the effects of seaweed and yeast applications against biostimulant and salt stress in grapevine. Mustafa Kemal University Journal of Agricultural Sciences, 29(2), 569-588. https://doi.org/10.37908/mkutbd.1472846
- Karimi, R. & Ershadi, A. (2015). Role of exogenous abscisic acid in adapting of 'Sultana' grapevine to low-temperature stress. Acta Physiologiae Plantarum, 37, 1-11. https://doi.org/10.1007/s11738-015-1902-z
- Karimi, R., Gavili-Kilaneh, K. & Khadivi, A. (2022). Methyl jasmonate promotes salinity adaptation responses in two grapevine (Vitis vinifera L.) cultivars differing in salt tolerance. Food Chemistry, 375, 131667. https://doi.org/10.1016/j.foodchem.2021.131667
- Klimek, K., Kapłan, M. & Najda, A. (2022). Influence of Rootstock on Yield Quantity and Quality, Contents of Biologically Active Compounds and Antioxidant Activity in Regent Grapevine Fruit. Molecules, 27(7), 2065. https://doi.org/10.3390/molecules27072065
- Kowalska, J., Krzymińska, J. & Tyburski, J. (2022). Yeasts as a potential biological agent in plant disease protection and yield improvement-A short review. Agriculture, 12(9), 1404. https://doi.org/10.3390/agriculture12091404
- Lacuesta, M., Dever, L. V., Muñoz-Rueda, A. & Lea, P. J. (1997). A study of photorespiratory ammonia production in the C4 plant Amaranthus edulis, using mutants with altered photosynthetic capacities. Physiologia Plantarum, 99(3), 447-455. https://doi.org/10.1034/j.1399-3054.1997.990313.x
- Lattanzio, V. (2013). Phenolic Compounds: Introduction. Natural Products, 1543–1580. https://doi.org/10.1007/978-3-642-22144-6_57
- Lee, G., Lee, S. H., Kim, K. M. & Ryu, C. M. (2017). Foliar application of the leaf-colonizing yeast Pseudozyma churashimaensis elicits systemic defense of pepper against bacterial and viral pathogens. Scientific Reports, 7(1), 39432. https://doi.org/10.1038/srep39432
- Meggio, F., Prinsi, B., Negri, A. S., Simone Di Lorenzo, G., Lucchini, G., Pitacco, A., Failla, O., Scienza, A., Cocucci, M. & Espen, L. (2014). Biochemical and physiological responses of two grapevine rootstock genotypes to drought and salt treatments. Australian Journal of Grape and Wine Research, 20(2), 310–323. https://doi.org/10.1111/ajgw.12071
- Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7(9), 405–410. https://doi.org/10.1016/s1360-1385(02)02312-9
- Mohammadkhani, N., Heidari, R., Abbaspour, N. & Rahmani, F. (2016). Effects of Salinity on Plant Hormones Genes in Grape. Iranian Journal of Science and Technology, Transactions A: Science, 42(2), 401–410. https://doi.org/10.1007/s40995-016-0061-4
- Moon, H., Lee, G., Yun, H. S. & Kwon, C. (2015). Non-proteinaceous yeast extract induces Arabidopsis defense responses independently of salicylic acid. Journal of Plant Biology, 58, 38-43. https://doi.org/10.1007/s12374-014-0430-5
- Monteiro, E., Baltazar, M., Pereira, S., Correia, S., Ferreira, H., Alves, F., Cortez, I., Castro, I. & Gonçalves, B. (2023). Ascophyllum nodosum Extract and Glycine Betaine Preharvest Application in Grapevine: Enhancement of Berry Quality, Phytochemical Content and Antioxidant Properties. Antioxidants, 12(10), 1835. https://doi.org/10.3390/antiox12101835
- Munns, R., James, R. A. & Läuchli, A. (2006). Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany, 57(5), 1025-1043. https://doi.org/10.1093/jxb/erj100
- Naikoo, M. I., Dar, M. I., Raghib, F., Jaleel, H., Ahmad, B., Raina, A., Khan, F. A. & Naushin, F. (2019). Role and Regulation of Plants Phenolics in Abiotic Stress Tolerance. Plant Signaling Molecules, 157–168. https://doi.org/10.1016/b978-0-12-816451-8.00009-5
- Nakano, Y. & Asada, K. (1981). Hydrogen Peroxide is Scavenged by Ascorbate-specific Peroxidase in Spinach Chloroplasts. Plant and Cell Physiology, 22(5), 867–880. https://doi.org/10.1093/oxfordjournals.pcp.a076232
- Narusaka, M., Minami, T., Iwabuchi, C., Hamasaki, T., Takasaki, S., Kawamura, K. & Narusaka, Y. (2015). Yeast Cell Wall Extract Induces Disease Resistance against Bacterial and Fungal Pathogens in Arabidopsis thaliana and Brassica Crop. Plos One, 10(1), e0115864. https://doi.org/10.1371/journal.pone.0115864
- Nikolaou, K. E., Chatzistathis, T., Theocharis, S., Argiriou, A., Koundouras, S. & Zioziou, E. (2021). Effects of salinity and rootstock on nutrient element concentrations and physiology in own-rooted or grafted to 1103 P and 101-14 Mgt rootstocks of merlot and cabernet franc grapevine cultivars under climate change. Sustainability, 13(5), 2477. https://doi.org/10.3390/su13052477
- Ozden, M., Demirel, U. & Kahraman, A. (2009). Effects of proline on antioxidant system in leaves of grapevine (Vitis vinifera L.) exposed to oxidative stress by H2O2. Scientia Horticulturae, 119(2), 163–168. https://doi.org/10.1016/j.scienta.2008.07.031
- Parida, A. K. & Das, A. B. (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 60(3), 324–349. https://doi.org/10.1016/j.ecoenv.2004.06.010
- Pérez, M., Dominguez-López, I. & Lamuela-Raventós, R. M. (2023). The Chemistry Behind the Folin–Ciocalteu Method for the Estimation of (Poly)phenol Content in Food: Total Phenolic Intake in a Mediterranean Dietary Pattern. Journal of Agricultural and Food Chemistry, 71(46), 17543–17553. https://doi.org/10.1021/acs.jafc.3c04022
- Phogat, V., Pitt, T., Stevens, R. M., Cox, J. W., Šimůnek, J. & Petrie, P. R. (2020). Assessing the role of rainfall redirection techniques for arresting the land degradation under drip irrigated grapevines. Journal of Hydrology, 587, 125000. https://doi.org/10.1016/j.jhydrol.2020.125000
- Polidoros, A. N. & Scandalios, J. G. (1999). Role of hydrogen peroxide and different classes of antioxidants in the regulation of catalase and glutathione S-transferase gene expression in maize (Zea mays L.). Physiologia Plantarum, 106(1), 112-120. https://doi.org/10.1034/j.1399-3054.1999.106116.x
- Portu, J., López, R., Baroja, E., Santamaría, P. & Garde-Cerdán, T. (2016). Improvement of grape and wine phenolic content by foliar application to grapevine of three different elicitors: Methyl jasmonate, chitosan, and yeast extract. Food Chemistry, 201, 213-221. https://doi.org/10.1016/j.foodchem.2016.01.086
- Qu, C. P., Xu, Z. R., Liu, G. J., Liu, C., Li, Y., Wei, Z. G. & Liu, G. F. (2010). Differential expression of copper-zinc superoxide dismutase gene of Polygonum sibiricum leaves, stems and underground stems, subjected to high-salt stress. International Journal of Molecular Sciences, 11(12), 5234-5245. https://doi.org/10.3390/ijms11125234
- Reglinski, T., Lyon, G. D. & Newton, A. C. (1994). Induction of resistance mechanisms in barley by yeast-derived elicitors. Annals of Applied Biology, 124(3), 509-517. https://doi.org/10.1111/j.1744-7348.1994.tb04155.x
- Rengasamy, P. (2006). World salinization with emphasis on Australia. Journal of Experimental Botany, 57(5), 1017–1023. https://doi.org/10.1093/jxb/erj108
- Scandalios, J. G. (1993). Oxygen stress and superoxide dismutases. Plant physiology, 101(1), 7. https://doi.org/10.1104/pp.101.1.7
- Shahzadi, A., Tahir, N., Usman, M. K., Raza, A. & Ouedraogo, A. (2022). Protecting Plants from Disease and Increasing Their Yields Through the Use of Yeasts as a Biological Agent. International Journal of Advances in Agricultural Science and Technology, 1, 1-13.
- Sharma, A., Shahzad, B., Rehman, A., Bhardwaj, R., Landi, M. & Zheng, B. (2019). Response of Phenylpropanoid Pathway and the Role of Polyphenols in Plants under Abiotic Stress. Molecules, 24(13), 2452. https://doi.org/10.3390/molecules24132452
- Silveira, J. A. G., Melo, A. R. B., Viégas, R. A. & Oliveira, J. T. A. (2001). Salinity-induced effects on nitrogen assimilation related to growth in cowpea plants. Environmental and Experimental Botany, 46(2), 171–179. https://doi.org/10.1016/s0098-8472(01)00095-8
- Singleton, V.L. & Rossi, J.J.A. (1965). Colorimetric of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144-158. https://doi.org/10.5344/ajev.1965.16.3.144
- Sudha, G. & Ravishankar, G. A. (2002). Involvement and interaction of various signaling compounds on the plant metabolic events during defense response, resistance to stress factors, formation of secondary metabolites and their molecular aspects. Plant Cell, Tissue and Organ Culture, 71(3), 181-212. https://doi.org/10.1023/a:1020336626361
- Sahin, Ö. (2009). Determination of tolerance mechanisms of sultani seedless (Vitis vinifera l.) grape variety grafted on different grapevine rootstocks to boron and salt stress by stress-related physiological parameters and antioxidant enzymes (Master's thesis, Ankara Universitesi (Turkey)).
- Tumpa, F. H. & Khokon, M. A. R. (2020). Foliar application of chitosan and yeast elicitor facilitate reducing incidence and severity of Alternaria leaf blight of tomato and brinjal. Research Journal of Plant Pathology, 3(2), 4.
- Várallyay, G. (1994). Climate Change, Soil Salinity and Alkalinity. Soil Responses to Climate Change, 39–54. https://doi.org/10.1007/978-3-642-79218-2_4
- Wang, P., Liu, W. C., Han, C., Wang, S., Bai, M. Y. & Song, C. P. (2024). Reactive oxygen species: multidimensional regulators of plant adaptation to abiotic stress and development. Journal of Integrative Plant Biology, 66(3), 330-367.
- Wei, L., Du, Y., Xiang, J., Zheng, T., Cheng, J. & Wu, J. (2023). Integrated mRNA and miRNA transcriptome analysis of grape in responses to salt stress. Frontiers in Plant Science, 14, 1173857. https://doi.org/10.3389/fpls.2023.1173857
- Wu, J., Zhong, H., Ma, Y., Bai, S., Yadav, V., Zhang, C., Zhang, F., Shi, W., Abudureheman, R. & Wang, X. (2024). Effects of Different Biostimulants on Growth and Development of Grapevine Seedlings under High-Temperature Stress. Horticulturae, 10(3), 269. https://doi.org/10.3390/horticulturae10030269
- Yilmaz, Y. & Sensoy, R. I. G. (2021). The use of biostimulants in sustainable viticulture. Journal of the Institute of Science and Technology, 11(2), 846-856. https://doi.org/10.21597/jist.831987
- Zargoosh, Z., Ghavam, M., Bacchetta, G. & Tavili, A. (2019). Effects of ecological factors on the antioxidant potential and total phenol content of Scrophularia striata Boiss. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-52605-8
- Zhou, D.-D., Li, J., Xiong, R.-G., Saimaiti, A., Huang, S.-Y., Wu, S.-X., Yang, Z.-J., Shang, A., Zhao, C.-N., Gan, R.-Y. & Li, H.-B. (2022). Bioactive Compounds, Health Benefits and Food Applications of Grape. Foods, 11(18), 2755. https://doi.org/10.3390/foods11182755
- Zhou-Tsang, A., Wu, Y., Henderson, S. W., Walker, A. R., Borneman, A. R., Walker, R. R. & Gilliham, M. (2021). Grapevine salt tolerance. Australian Journal of Grape and Wine Research, 27(2), 149-168. https://doi.org/10.1111/ajgw.12487
The influence of rootstock and biostimulants on the dynamics of antioxidant defense mechanisms under salt stress in potted Öküzgözü grapevines (Vitis vinifera L.)
Yıl 2025,
Cilt: 9 Sayı: 2, 583 - 598, 26.06.2025
Damla Yüksel Küskü
,
Hande Tahmaz Karaman
,
Birhan Kunter
Öz
Salt stress has become an increasingly serious threat to viticulture due to global climate change and a lack of irrigation resources. Salt accumulated in the soil causes ionic imbalance, osmotic stress and consequently oxidative stress in grapevines, negatively affecting the morphological, physiological and biochemical processes of the plant. The defense responses developed by the plant against these stress conditions may differ largely depending on the rootstock material used and the supporting external applications. In this context, in the study, two different levels of salt stress (Salt 1: 150 mM, Salt 2: 150 mM+150 mM) were applied on three different rootstocks (Ownroot, 1103P and 140Ru) of potted Öküzgözü (Vitis vinifera L.) and the effects of biostimulants (Saccharomyces cerevisiae and Ascophyllum nodosum) on the antioxidant system were investigated under salt stress conditions in 2023 vegetation period. The results showed that rootstocks developed different responses to salt stress and the severity of these responses varied depending on the type of treatment. Total phenolic compound level increased the most in high salt stress and biostimulants balanced this stress. Antioxidant activity, similar to total phenolic compounds and as expected, reached the maximum level at high salt stress and both parameters were highest on the 1103P rootstock. SOD level decreased with increasing salt stress and the highest SOD activity was measured in the control group 140Ru vines. CAT activity reached the highest level in 1103P at high salt stress. CAT and APX activities increased to higher levels with the second salt treatment than the first. The decrease in SOD enzyme more effectively manifested the use of biostimulants against stress, while CAT and APX activities showed an upward trend with the use of biostimulants, while CAT and APX activities showed an upward trend with the use of biostimulants.
Kaynakça
- Aazami, M. A., Maleki, M., Rasouli, F. & Gohari, G. (2023). Protective effects of chitosan based salicylic acid nanocomposite (CS-SA NCs) in grape (Vitis vinifera cv.'Sultana') under salinity stress. Scientific Reports, 13(1), 883. https://doi.org/10.1038/s41598-023-27618-z
- Abbasi, H., Jamil, M., Haq, A., Ali, S., Ahmad, R. & Malik, Z. (2016). Salt stress manifestation on plants, mechanism of salt tolerance and potassium role in alleviating it: a review. Zemdirbyste-Agriculure, 103, 229-238. https://doi.org/10.13080/z-a.2016.103.030
- Ahmad, P., Sarwat, M. & Sharma, S. (2008). Reactive oxygen species, antioxidants and signaling in plants. Journal of Plant Biology, 51 (3), 167 173. https://doi.org/10.1007/bf03030694
- Al-Abbassi, G. B., Al-Dihaimawi, A. J. & Al-Anzi, B. N. (2022). Effect of salicylic acid and putrescine on the ions content in ex vivo strawberry Fragaria ananassa branches under salinity stress. International Journal of Agricultural & Statistical Sciences, 18.
- Raghda'a Ali Al-Khafajy, D., AL-Taey, K. A. & AL-Mohammed, M. H. (2020). The impact of water quality, bio fertilizers and selenium spraying on some vegetative and flowering growth parameters of Calendula officinalis L. under salinity stress. International Journal of Agricultural and Statistical Sciences, 16, 1175-1180.
- Almagro, L., Calderón, A. A., Pedreño, M. A. & Ferrer, M. A. (2022). Differential response of phenol metabolism associated with antioxidative network in elicited grapevine suspension cultured cells under saline conditions. Antioxidants, 11(2), 388. https://doi.org/10.3390/antiox11020388
- Anjos, A. P. D., Oliveira, G. R. F., Mello, S. D. C., Silva, M. S. D., Gomes-Junior, F. G., Novembre, A. D. D. L. C. & Azevedo, R. A. (2020). Seed priming with seaweed extract mitigate heat stress in spinach: effect on germination, seedling growth and antioxidant capacity. Bragantia, 79(4), 502-511. https://doi.org/10.1590/1678-4499.20200127
- Apel, K. & Hirt, H. (2004). Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55(1), 373-399. https://doi.org/10.1146/annurev.arplant.55.031903.141701
- Asada, K. & Takahashi, M. (1987). ̍Production and scavenging of active oxygen in photosynthesis̍. In: Kyle, D.J., Osmund, C.D. and Arntzen, C.J. (Eds.), Photoinhibition. Elsevier Science Publishers, Amsterdam, pp. 227-287.
- Ashraf, M. (2009). Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnology Advances, 27: 84-93. https://doi.org/10.1016/j.biotechadv.2008.09.003
- Baroi, A.M., Popitiu, M., Fierascu, I., Sărdărescu, I.D. & Fierascu, R.C. (2022) Grapevine wastes: A rich source of antioxidants and other biologically active compounds. Antioxidants (Basel), 11(2):393. https://doi.org/10.3390/antiox11020393
- Chaves, M.M., Zarrouk, O., Francisco, R., Costa, J.M., Santos, T., Regalado, A.P., Rodrigues, M.L. & Lopes, C.M. (2010) Grapevineunder deficit irrigation: hints from physiological and molecular data. Annals of Botany, 105, 661-676. https://doi.org/10.1093/aob/mcq030
- Choudhury, F. K., Rivero, R. M., Blumwald, E. & Mittler, R. (2017). Reactive oxygen species, abiotic stress and stress combination. The Plant Journal, 90(5), 856-867. https://doi.org/10.1111/tpj.13299
- Cifre, J., Bota, J., Escalona, J. M., Medrano, H. & Flexas, J. (2005). Physiological tools for irrigation scheduling in grapevine (Vitis vinifera L.): an open gate to improve water-use efficiency?. Agriculture, Ecosystems & Environment, 106(2-3), 159-170. https://doi.org/10.1016/j.agee.2004.10.005
- Cramer, G. R., Ergül, A., Grimplet, J., Tillett, R. L., Tattersall, E. A. R., Bohlman, M. C., Vincent, D., Sonderegger, J., Evans, J., Osborne, C., Quilici, D., Schlauch, K. A., Schooley, D. A., & Cushman, J. C. (2006). Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Functional & Integrative Genomics, 7(2), 111–134. https://doi.org/10.1007/s10142-006-0039-y
- Cakmak, I., Strbac, D. & Marschner, H. (1993). Activities of hydrogen peroxide-scavenging enzymes in germinating wheat seeds. Journal of Experimental Botany, 44(1), 127-132. https://doi.org/10.1093/jxb/44.1.127
- Desoky, E. S. M., ElSayed, A. I., Merwad, A. R. M. & Rady, M. M. (2019). Stimulating antioxidant defenses, antioxidant gene expression, and salt tolerance in Pisum sativum seedling by pretreatment using licorice root extract (LRE) as an organic biostimulant. Plant Physiology and Biochemistry, 142, 292-302. https://doi.org/10.1016/j.plaphy.2019.07.020
- Demiral, T. & Türkan, I. (2005). Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environmental and Experimental Botany, 53(3), 247-257. https://doi.org/10.1016/j.envexpbot.2004.03.017
- De Pascale, S., Rouphael, Y. & Colla, G. (2017). Plant biostimulants: Innovative tool for enhancing plant nutrition in organic farming. European Journal of Horticultural Science, 82(6), 277-285. https://doi.org/10.17660/ejhs.2017/82.6.2
- Deng, L., Chen, L., Zhao, J. & Wang, R. (2021). Comparative analysis on environmental and economic performance of agricultural cooperatives and smallholder farmers: The case of grape production in Hebei, China. Plos One, 16(1), e0245981. https://doi.org/10.1371/journal.pone.0245981
- Du Jardin, P. (2015). Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae, 196, 3-14. https://doi.org/10.1016/j.scienta.2015.09.021
- El Boukhari, M. E. M., Barakate, M., Drissi, B., Bouhia, Y. & Lyamlouli, K. (2023). Seaweed extract biostimulants differentially act in mitigating drought stress on faba bean (Vicia faba L.). Journal of Plant Growth Regulation, 42(9), 5642-5652. https://doi.org/10.1007/s00344-023-10945-w
- Gajjar, P., Ismail, A., Islam, T., Darwish, A. G., Moniruzzaman, M., Abuslima, E., Dawood, A. S., El-Saady, A. M., Tsolova, V., El-Kereamy, A., Nick, P., Sherif, S. M., Abazinge, M. D. & El-Sharkawy, I. (2023). Physiological Comparison of Two Salt-Excluder Hybrid Grapevine Rootstocks under Salinity Reveals Different Adaptation Qualities. Plants, 12(18), 3247. https://doi.org/10.3390/plants12183247
- Gill, S. S. & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909-930. https://doi.org/10.1016/j.plaphy.2010.08.016
- Gong, H., Zhu, X., Chen, K., Wang, S. & Zhang, C. (2005). Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Science, 169(2), 313-321. https://doi.org/10.1016/j.plantsci.2005.02.023
- Hernández, J. A., Del Río, L. A. & Sevilla, F. (1994). Salt stress-induced changes in superoxide dismutase isozymes in leaves and mesophyll protoplasts from Vigna unguiculata (L.) Walp. New Phytologist, 126(1), 37-44. https://doi.org/10.1111/j.1469-8137.1994.tb07527.x
- Huo, Y.D. (2023) Effects of substrate quality on organic carbon mineralization, microbial community composition, and functional genes in coastal saline-alkali soils. Dissertation, Shandong Agricultural University. https://doi.org/1 0.2 7277/d.c nki.g sdnu. 2023. 000833
- Jaleel, C. A., Riadh, K., Gopi, R., Manivannan, P., Inès, J., Al-Juburi, H. J., Chang-Xing, Z., Hong-Bo, S. & Panneerselvam, R. (2009). Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints. Acta Physiologiae Plantarum, 31(3), 427–436. https://doi.org/10.1007/s11738-009-0275-6
- Jamalian, S., Gholami, M. & Esna-Ashari, M. (2013). Abscisic acid-mediated increase in leaf phenolic compounds, plant growth and yield is strawberry under different salt stress regimes. Theoretical and Experimental Plant Physiology, 25, 291-299.
- Karaman, H. T., Küskü, D. Y. & Kunter, B. (2024). Determination of the effects of seaweed and yeast applications against biostimulant and salt stress in grapevine. Mustafa Kemal University Journal of Agricultural Sciences, 29(2), 569-588. https://doi.org/10.37908/mkutbd.1472846
- Karimi, R. & Ershadi, A. (2015). Role of exogenous abscisic acid in adapting of 'Sultana' grapevine to low-temperature stress. Acta Physiologiae Plantarum, 37, 1-11. https://doi.org/10.1007/s11738-015-1902-z
- Karimi, R., Gavili-Kilaneh, K. & Khadivi, A. (2022). Methyl jasmonate promotes salinity adaptation responses in two grapevine (Vitis vinifera L.) cultivars differing in salt tolerance. Food Chemistry, 375, 131667. https://doi.org/10.1016/j.foodchem.2021.131667
- Klimek, K., Kapłan, M. & Najda, A. (2022). Influence of Rootstock on Yield Quantity and Quality, Contents of Biologically Active Compounds and Antioxidant Activity in Regent Grapevine Fruit. Molecules, 27(7), 2065. https://doi.org/10.3390/molecules27072065
- Kowalska, J., Krzymińska, J. & Tyburski, J. (2022). Yeasts as a potential biological agent in plant disease protection and yield improvement-A short review. Agriculture, 12(9), 1404. https://doi.org/10.3390/agriculture12091404
- Lacuesta, M., Dever, L. V., Muñoz-Rueda, A. & Lea, P. J. (1997). A study of photorespiratory ammonia production in the C4 plant Amaranthus edulis, using mutants with altered photosynthetic capacities. Physiologia Plantarum, 99(3), 447-455. https://doi.org/10.1034/j.1399-3054.1997.990313.x
- Lattanzio, V. (2013). Phenolic Compounds: Introduction. Natural Products, 1543–1580. https://doi.org/10.1007/978-3-642-22144-6_57
- Lee, G., Lee, S. H., Kim, K. M. & Ryu, C. M. (2017). Foliar application of the leaf-colonizing yeast Pseudozyma churashimaensis elicits systemic defense of pepper against bacterial and viral pathogens. Scientific Reports, 7(1), 39432. https://doi.org/10.1038/srep39432
- Meggio, F., Prinsi, B., Negri, A. S., Simone Di Lorenzo, G., Lucchini, G., Pitacco, A., Failla, O., Scienza, A., Cocucci, M. & Espen, L. (2014). Biochemical and physiological responses of two grapevine rootstock genotypes to drought and salt treatments. Australian Journal of Grape and Wine Research, 20(2), 310–323. https://doi.org/10.1111/ajgw.12071
- Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7(9), 405–410. https://doi.org/10.1016/s1360-1385(02)02312-9
- Mohammadkhani, N., Heidari, R., Abbaspour, N. & Rahmani, F. (2016). Effects of Salinity on Plant Hormones Genes in Grape. Iranian Journal of Science and Technology, Transactions A: Science, 42(2), 401–410. https://doi.org/10.1007/s40995-016-0061-4
- Moon, H., Lee, G., Yun, H. S. & Kwon, C. (2015). Non-proteinaceous yeast extract induces Arabidopsis defense responses independently of salicylic acid. Journal of Plant Biology, 58, 38-43. https://doi.org/10.1007/s12374-014-0430-5
- Monteiro, E., Baltazar, M., Pereira, S., Correia, S., Ferreira, H., Alves, F., Cortez, I., Castro, I. & Gonçalves, B. (2023). Ascophyllum nodosum Extract and Glycine Betaine Preharvest Application in Grapevine: Enhancement of Berry Quality, Phytochemical Content and Antioxidant Properties. Antioxidants, 12(10), 1835. https://doi.org/10.3390/antiox12101835
- Munns, R., James, R. A. & Läuchli, A. (2006). Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany, 57(5), 1025-1043. https://doi.org/10.1093/jxb/erj100
- Naikoo, M. I., Dar, M. I., Raghib, F., Jaleel, H., Ahmad, B., Raina, A., Khan, F. A. & Naushin, F. (2019). Role and Regulation of Plants Phenolics in Abiotic Stress Tolerance. Plant Signaling Molecules, 157–168. https://doi.org/10.1016/b978-0-12-816451-8.00009-5
- Nakano, Y. & Asada, K. (1981). Hydrogen Peroxide is Scavenged by Ascorbate-specific Peroxidase in Spinach Chloroplasts. Plant and Cell Physiology, 22(5), 867–880. https://doi.org/10.1093/oxfordjournals.pcp.a076232
- Narusaka, M., Minami, T., Iwabuchi, C., Hamasaki, T., Takasaki, S., Kawamura, K. & Narusaka, Y. (2015). Yeast Cell Wall Extract Induces Disease Resistance against Bacterial and Fungal Pathogens in Arabidopsis thaliana and Brassica Crop. Plos One, 10(1), e0115864. https://doi.org/10.1371/journal.pone.0115864
- Nikolaou, K. E., Chatzistathis, T., Theocharis, S., Argiriou, A., Koundouras, S. & Zioziou, E. (2021). Effects of salinity and rootstock on nutrient element concentrations and physiology in own-rooted or grafted to 1103 P and 101-14 Mgt rootstocks of merlot and cabernet franc grapevine cultivars under climate change. Sustainability, 13(5), 2477. https://doi.org/10.3390/su13052477
- Ozden, M., Demirel, U. & Kahraman, A. (2009). Effects of proline on antioxidant system in leaves of grapevine (Vitis vinifera L.) exposed to oxidative stress by H2O2. Scientia Horticulturae, 119(2), 163–168. https://doi.org/10.1016/j.scienta.2008.07.031
- Parida, A. K. & Das, A. B. (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 60(3), 324–349. https://doi.org/10.1016/j.ecoenv.2004.06.010
- Pérez, M., Dominguez-López, I. & Lamuela-Raventós, R. M. (2023). The Chemistry Behind the Folin–Ciocalteu Method for the Estimation of (Poly)phenol Content in Food: Total Phenolic Intake in a Mediterranean Dietary Pattern. Journal of Agricultural and Food Chemistry, 71(46), 17543–17553. https://doi.org/10.1021/acs.jafc.3c04022
- Phogat, V., Pitt, T., Stevens, R. M., Cox, J. W., Šimůnek, J. & Petrie, P. R. (2020). Assessing the role of rainfall redirection techniques for arresting the land degradation under drip irrigated grapevines. Journal of Hydrology, 587, 125000. https://doi.org/10.1016/j.jhydrol.2020.125000
- Polidoros, A. N. & Scandalios, J. G. (1999). Role of hydrogen peroxide and different classes of antioxidants in the regulation of catalase and glutathione S-transferase gene expression in maize (Zea mays L.). Physiologia Plantarum, 106(1), 112-120. https://doi.org/10.1034/j.1399-3054.1999.106116.x
- Portu, J., López, R., Baroja, E., Santamaría, P. & Garde-Cerdán, T. (2016). Improvement of grape and wine phenolic content by foliar application to grapevine of three different elicitors: Methyl jasmonate, chitosan, and yeast extract. Food Chemistry, 201, 213-221. https://doi.org/10.1016/j.foodchem.2016.01.086
- Qu, C. P., Xu, Z. R., Liu, G. J., Liu, C., Li, Y., Wei, Z. G. & Liu, G. F. (2010). Differential expression of copper-zinc superoxide dismutase gene of Polygonum sibiricum leaves, stems and underground stems, subjected to high-salt stress. International Journal of Molecular Sciences, 11(12), 5234-5245. https://doi.org/10.3390/ijms11125234
- Reglinski, T., Lyon, G. D. & Newton, A. C. (1994). Induction of resistance mechanisms in barley by yeast-derived elicitors. Annals of Applied Biology, 124(3), 509-517. https://doi.org/10.1111/j.1744-7348.1994.tb04155.x
- Rengasamy, P. (2006). World salinization with emphasis on Australia. Journal of Experimental Botany, 57(5), 1017–1023. https://doi.org/10.1093/jxb/erj108
- Scandalios, J. G. (1993). Oxygen stress and superoxide dismutases. Plant physiology, 101(1), 7. https://doi.org/10.1104/pp.101.1.7
- Shahzadi, A., Tahir, N., Usman, M. K., Raza, A. & Ouedraogo, A. (2022). Protecting Plants from Disease and Increasing Their Yields Through the Use of Yeasts as a Biological Agent. International Journal of Advances in Agricultural Science and Technology, 1, 1-13.
- Sharma, A., Shahzad, B., Rehman, A., Bhardwaj, R., Landi, M. & Zheng, B. (2019). Response of Phenylpropanoid Pathway and the Role of Polyphenols in Plants under Abiotic Stress. Molecules, 24(13), 2452. https://doi.org/10.3390/molecules24132452
- Silveira, J. A. G., Melo, A. R. B., Viégas, R. A. & Oliveira, J. T. A. (2001). Salinity-induced effects on nitrogen assimilation related to growth in cowpea plants. Environmental and Experimental Botany, 46(2), 171–179. https://doi.org/10.1016/s0098-8472(01)00095-8
- Singleton, V.L. & Rossi, J.J.A. (1965). Colorimetric of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144-158. https://doi.org/10.5344/ajev.1965.16.3.144
- Sudha, G. & Ravishankar, G. A. (2002). Involvement and interaction of various signaling compounds on the plant metabolic events during defense response, resistance to stress factors, formation of secondary metabolites and their molecular aspects. Plant Cell, Tissue and Organ Culture, 71(3), 181-212. https://doi.org/10.1023/a:1020336626361
- Sahin, Ö. (2009). Determination of tolerance mechanisms of sultani seedless (Vitis vinifera l.) grape variety grafted on different grapevine rootstocks to boron and salt stress by stress-related physiological parameters and antioxidant enzymes (Master's thesis, Ankara Universitesi (Turkey)).
- Tumpa, F. H. & Khokon, M. A. R. (2020). Foliar application of chitosan and yeast elicitor facilitate reducing incidence and severity of Alternaria leaf blight of tomato and brinjal. Research Journal of Plant Pathology, 3(2), 4.
- Várallyay, G. (1994). Climate Change, Soil Salinity and Alkalinity. Soil Responses to Climate Change, 39–54. https://doi.org/10.1007/978-3-642-79218-2_4
- Wang, P., Liu, W. C., Han, C., Wang, S., Bai, M. Y. & Song, C. P. (2024). Reactive oxygen species: multidimensional regulators of plant adaptation to abiotic stress and development. Journal of Integrative Plant Biology, 66(3), 330-367.
- Wei, L., Du, Y., Xiang, J., Zheng, T., Cheng, J. & Wu, J. (2023). Integrated mRNA and miRNA transcriptome analysis of grape in responses to salt stress. Frontiers in Plant Science, 14, 1173857. https://doi.org/10.3389/fpls.2023.1173857
- Wu, J., Zhong, H., Ma, Y., Bai, S., Yadav, V., Zhang, C., Zhang, F., Shi, W., Abudureheman, R. & Wang, X. (2024). Effects of Different Biostimulants on Growth and Development of Grapevine Seedlings under High-Temperature Stress. Horticulturae, 10(3), 269. https://doi.org/10.3390/horticulturae10030269
- Yilmaz, Y. & Sensoy, R. I. G. (2021). The use of biostimulants in sustainable viticulture. Journal of the Institute of Science and Technology, 11(2), 846-856. https://doi.org/10.21597/jist.831987
- Zargoosh, Z., Ghavam, M., Bacchetta, G. & Tavili, A. (2019). Effects of ecological factors on the antioxidant potential and total phenol content of Scrophularia striata Boiss. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-52605-8
- Zhou, D.-D., Li, J., Xiong, R.-G., Saimaiti, A., Huang, S.-Y., Wu, S.-X., Yang, Z.-J., Shang, A., Zhao, C.-N., Gan, R.-Y. & Li, H.-B. (2022). Bioactive Compounds, Health Benefits and Food Applications of Grape. Foods, 11(18), 2755. https://doi.org/10.3390/foods11182755
- Zhou-Tsang, A., Wu, Y., Henderson, S. W., Walker, A. R., Borneman, A. R., Walker, R. R. & Gilliham, M. (2021). Grapevine salt tolerance. Australian Journal of Grape and Wine Research, 27(2), 149-168. https://doi.org/10.1111/ajgw.12487