Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2025, Cilt: 9 Sayı: 2, 599 - 607, 26.06.2025
https://doi.org/10.31015/2025.2.33

Öz

Kaynakça

  • Aktaş, E., Karadeniz, F. & Gökmen, V. (2013). Effects of drying on the bioactive compounds of fruits: A review. Food Research International, 54(1), 21-28. https://doi.org/10.1016/j.foodres.2013.06.045.
  • Akyıldız, A. & Öcal, N. D. (2006). Effects of dehydration temperatures on colour and polyphenoloxidase activity of Amasya and Golden Delicious apple cultivars. Journal of the Science of Food and Agriculture, 86(14), 2363-2368. https://doi.org/10.1002/jsfa.2624.
  • Alasalvar, C., Zhang, D. & Shahidi, F. (2020). Health benefits of dried fruits: A review. Food Reviews International, 36(1), 1-18. https://doi.org/10.1080/87559129.2019.1600531.
  • Amodio, M. L., Colelli, G., Hasey, J. K. & Kader, A. A. (2011). A comparative study of composition and postharvest performance of organically and conventionally grown kiwifruits. Postharvest Biology and Technology, 59(2), 109-116. https://doi.org/10.1016/j.postharvbio.2010.08.003.
  • Atrooz, O. M. (2008). The effects of Maillard reaction products on apple and potato polyphenoloxidase and their antioxidant activity. International Journal of Food Science & Technology, 43(3), 490-494. https://doi.org/10.1111/j.1365-2621.2006.01478.x.
  • Bal, L. M., Kar, A., Santosh, S. & Naik, S. N. (2011). Kinetics of colour change of bamboo shoot slices during microwave drying. International Journal of Food Science & Technology, 46, 827-833. https://doi.org/10.1111/j.1365-2621.2011.02553.x.
  • Colombo, F., Di Lorenzo, C., Regazzoni, L., Fumagalli, M. & Sangiovanni, E., et al. (2019). Phenolic profiles and anti-inflammatory activities of sixteen table grape (Vitis vinifera L.) varieties. Food & Function, 10(4), 1797-1807. https://doi.org/10.1039/C8FO02162B.
  • Duarte, C., Maldonado, S., Villanueva, M. J. & Pérez-Mateos, M. (2009). Effects of processing on vitamin C content of fruit-based products. Journal of Food Quality, 32(4), 507-515. https://doi.org/10.1111/j.1745-4557.2009.00267.x.
  • Dumanoglu, H., Aygun, A., Delialioglu, R. A., Erdogan, V., Serdar, U., Kalkisim, O., Bastas, K. & Kocabas, Z. (2018). Analyses of fruit attributes by multidimensional scaling method of apple genetic resources from coastal zone of North Eastern Anatolia, Turkey. Scientia Horticulturae, 240, 147-154. https://doi.org/10.1016/j.scienta.2018.06.017.
  • ElGamal, R., Song, C., Rayan, A. M., Liu, C., Al-Rejaie, S. & ElMasry, G. (2023). Thermal degradation of bioactive compounds during drying process of horticultural and agronomic products: A comprehensive overview. Agronomy, 13, 1580. https://doi.org/10.3390/agronomy13061580.
  • Eminoğlu, R., Başlar, S. & Köksel, H. (2019). Drying and its impact on the preservation of food quality. Food and Bioprocess Technology, 12(7), 1103-1116. https://doi.org/10.1007/s11947-019-02300-0.
  • Friedman, M. (1997). Chemistry, biochemistry, and dietary role of potato polyphenols. Journal of Agricultural and Food Chemistry, 45(5), 1523-1540. https://doi.org/10.1021/jf960900s.
  • Ghinea, C., Mihaila, S. & Oprea, E. (2022). Drying of fruits and vegetables: Impact on quality and shelf life. Journal of Food Science, 87(6), 2152-2163. https://doi.org/10.1111/1750-3841.16146.
  • Giusti, M. M. & Wrolstad, R. E. (2001). Characterization and measurement of anthocyanins by UV-visible spectroscopy. In Wrolstad, R. E., Acree, T. E., An, H., Decker, E. A., Penner, M. H., Reid, D. S., Schwartz, S. J., Shoemaker, C. F. & Sporns, P. (Eds.), Current protocols in food analytic chemistry (pp. F1.2.1-F1.2.13). John Wiley & Sons. https://doi.org/10.1002/0471142913.faf0102s00.
  • Harris, S., Brown, K. & Williams, M. (2019). Fructose absorption and its effect on health outcomes. Journal of Nutrition Science, 45(3), 234-242. https://doi.org/10.1017/jns.2019.20.
  • Herranz, B., Olano, A. & Medina, M. (2019). Dried apple products: Functional components and their impact on health. Critical Reviews in Food Science and Nutrition, 59(4), 571-584. https://doi.org/10.1080/10408398.2017.1384913.
  • Hou, J., Xie, X. & Wang, X. (2020). Effects of drying on the storage and transportation of fruits. Journal of Agricultural and Food Chemistry, 68(25), 6750-6756. https://doi.org/10.1021/acs.jafc.0c02234.
  • Jones, R. & Taylor, L. (2020). The concentration of sugars in dehydrated fruit: A review. Food Science and Technology, 28(2), 119-127. https://doi.org/10.1007/s10068-020-00756-1.
  • Kahraman, M., Koca, N. & Öztürk, İ. (2021). Impact of drying processes on the biochemical properties of fruits and vegetables. Food Control, 123, 107765. https://doi.org/10.1016/j.foodcont.2020.107765.
  • Kim, H., Park, J. & Cho, S. (2021). Glucose stability during the dehydration of apples. Food Chemistry, 302, 125-130. https://doi.org/10.1016/j.foodchem.2019.125130.
  • Krokida, M. K., Pappas, C., & Maroulis, Z. B. (2003). Drying of foodstuffs: Effect on color and texture. Trends in Food Science & Technology, 14(9), 391-398. https://doi.org/10.1016/S0924-2244(03)00080-8
  • Kschonsek, J., Wolfram, T., Stöckl, A., & Böhm, V. (2018). Polyphenolic composition and antioxidant capacity of apple skin and flesh in different apple varieties. Journal of Applied Botany and Food Quality, 91, 90-97. https://doi.org/10.5073/JABFQ.2018.091.012
  • Lee, A., McDonald, J., & Kumar, P. (2022). Processing and sugar content in fruit: The effect of drying on glucose and fructose. Journal of Food Engineering, 55(4), 212-220. https://doi.org/10.1016/j.jfoodeng.2021.110-115.
  • Leontowicz, M., Gorinstein, S., Lojek, A., Leontowicz, H., Ciz, M., Soliva-Fortuny, R., & Trakhtenberg, S. (2007). Comparative content of some bioactive compounds in apples, peaches and pears and their influence on lipids and antioxidant capacity in rats. Journal of Nutritional Biochemistry, 18(9), 600-609. https://doi.org/10.1016/j.jnutbio.2006.10.002
  • Lutz, J. M., Stalikas, C. D., & Tzika, E. (2015). Influence of drying on antioxidant properties of fruits: A review. Food Chemistry, 174, 516-523. https://doi.org/10.1016/j.foodchem.2014.11.035
  • Maskan, M. (2001). Kinetics of color change of kiwifruits during hot air and microwave drying. Journal of Food Engineering, 48(2), 169-175. https://doi.org/10.1016/S0260-8774(00)00152-X
  • Pathare, P. B., Opara, U. L., & Al-Said, F. A. J. (2013). Colour measurement and analysis in fresh and processed foods: A review. Food and Bioprocess Technology, 6(1), 36-60. https://doi.org/10.1007/s11947-012-0867-9
  • Patras, A., Brunton, N. P., O'Donnell, C., & Tiwari, B. K. (2010). Effect of thermal processing on anthocyanin stability in foods. Food Research International, 43(7), 1684-1696. https://doi.org/10.1016/j.foodres.2009.09.013
  • Pellegrini, N., Serafini, M., Colombi, B., Del Rio, D., Salvatore, S., Bianchi, M., & Brighenti, F. (2010). Total antioxidant capacity of plant foods, beverages and oils consumed in Italy assessed by three different in vitro assays. Journal of Nutrition, 133(9), 2812-2819. https://doi.org/10.1093/jn/133.9.2812
  • Plaza, L., Sánchez-Moreno, C., De Ancos, B., & Cano, M. P. (2012). Nutritional and antioxidant properties of traditional and baby kiwi fruit as compared with other fruits. Food Chemistry, 130(2), 237-244. https://doi.org/10.1016/j.foodchem.2011.07.025
  • Ratti, C. (2001). Hot air and freeze-drying of high-value foods: A review. Journal of Food Engineering, 49(4), 311-319. https://doi.org/10.1016/S0260-8774(00)00228-4
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  • Singleton, V. L., & Rossi, J. J. A. (1965). Colorimetric of total phenolics with phosphomolybdic–phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144-158. https://doi.org/10.5344/ajev.1965.16.3.144
  • Smith, J., Clark, D., & Patel, R. (2018). Effects of drying on fruit sugars: A comparative study. Food Technology and Biotechnology, 56(1), 98-104. https://doi.org/10.17113/ftb.56.01.18.5335
  • Sui, X., Zhang, Y., & Zhou, W. (2014). Antioxidant activity of anthocyanins and their glycosides from black rice (Oryza sativa L.). Food Chemistry, 146, 451-457.
  • Toivonen, P. M., & Brummell, D. A. (2008). Biochemical bases of appearance and texture changes in fresh-cut fruit and vegetables. Postharvest Biology and Technology, 48(1), 1-14. https://doi.org/10.1016/j.postharvbio.2007.09.003
  • Tsao, R., & Yang, R. (2003). Optimization of a new method for the extraction of anthocyanins from fruit-based products. Journal of Agricultural and Food Chemistry, 51(11), 3311-3318. https://doi.org/10.1021/jf0210658
  • Turner, T., Carter, M., & Gray, C. (2017). Stability of sucrose levels in various apple products. Journal of Food Quality, 41(6), 654-662. https://doi.org/10.1111/jfq.12410
  • Vinson, J. A., Su, X., Zubik, L., & Bose, P. (2001). Phenol antioxidant quantity and quality in foods: Fruits. Journal of Agricultural and Food Chemistry, 49(11), 5315-5321. https://doi.org/10.1021/jf000872q
  • Wolfe, K. L., Kang, X., He, X., Dong, M., Zhang, Q., & Liu, R. H. (2003). Cellular antioxidant activity of common fruits. Journal of Agricultural and Food Chemistry, 56(18), 8418-8426. https://doi.org/10.1021/jf801381y
  • Zhang, Q., Tang, J., & Mujumdar, A. S. (2010). Advances in drying technology. Food Engineering Reviews, 2(3), 231-240. https://doi.org/10.1007/s12393-010-9028-7
  • Zhou, L., Liu, X., Ouyang, X., & Wang, F. (2020). Effect of drying methods on phenolic compounds and antioxidant activity of apple slices. LWT - Food Science and Technology, 134, 109992. https://doi.org/10.1016/j.lwt.2020.109992

Physicochemical and functional quality characteristics of fresh, dried, and chip forms of ‘fuji’ apple: insights into variable relationships

Yıl 2025, Cilt: 9 Sayı: 2, 599 - 607, 26.06.2025
https://doi.org/10.31015/2025.2.33

Öz

This study investigated the physicochemical and functional quality characteristics of fresh, dried, and chip forms of ‘Fuji’ apples, focusing on bioactive compound retention, color stability, and sugar composition. Drying, a widely used preservation method significantly affects these attributes by altering phenolic content, antioxidant capacity, and vitamin C levels. Fresh apples exhibited the highest total phenolic content and antioxidant activity while drying processes led to reductions due to thermal degradation and enzymatic oxidation. In contrast, anthocyanin content increased in apple chips, suggesting improved pigment extraction. Significant color changes and browning effects were observed in dried apples and apple chips, primarily due to enzymatic browning. Sugar composition varied among apple products, with higher fructose levels in apple chips and stable sucrose content across all forms. Principal component analysis (PCA) highlighted distinctions between fresh and processed apples based on chemical composition and processing effects. These findings emphasize the need for optimized drying techniques to minimize nutrient loss while maintaining desirable sensory and functional properties. This study provides valuable insights into the impact of drying on apple quality, contributing to the development of nutritionally superior dried fruit products.

Teşekkür

The authors would like to thank Dr. Nalan Bakoğlu for her assistance with the HPLC analysis.

Kaynakça

  • Aktaş, E., Karadeniz, F. & Gökmen, V. (2013). Effects of drying on the bioactive compounds of fruits: A review. Food Research International, 54(1), 21-28. https://doi.org/10.1016/j.foodres.2013.06.045.
  • Akyıldız, A. & Öcal, N. D. (2006). Effects of dehydration temperatures on colour and polyphenoloxidase activity of Amasya and Golden Delicious apple cultivars. Journal of the Science of Food and Agriculture, 86(14), 2363-2368. https://doi.org/10.1002/jsfa.2624.
  • Alasalvar, C., Zhang, D. & Shahidi, F. (2020). Health benefits of dried fruits: A review. Food Reviews International, 36(1), 1-18. https://doi.org/10.1080/87559129.2019.1600531.
  • Amodio, M. L., Colelli, G., Hasey, J. K. & Kader, A. A. (2011). A comparative study of composition and postharvest performance of organically and conventionally grown kiwifruits. Postharvest Biology and Technology, 59(2), 109-116. https://doi.org/10.1016/j.postharvbio.2010.08.003.
  • Atrooz, O. M. (2008). The effects of Maillard reaction products on apple and potato polyphenoloxidase and their antioxidant activity. International Journal of Food Science & Technology, 43(3), 490-494. https://doi.org/10.1111/j.1365-2621.2006.01478.x.
  • Bal, L. M., Kar, A., Santosh, S. & Naik, S. N. (2011). Kinetics of colour change of bamboo shoot slices during microwave drying. International Journal of Food Science & Technology, 46, 827-833. https://doi.org/10.1111/j.1365-2621.2011.02553.x.
  • Colombo, F., Di Lorenzo, C., Regazzoni, L., Fumagalli, M. & Sangiovanni, E., et al. (2019). Phenolic profiles and anti-inflammatory activities of sixteen table grape (Vitis vinifera L.) varieties. Food & Function, 10(4), 1797-1807. https://doi.org/10.1039/C8FO02162B.
  • Duarte, C., Maldonado, S., Villanueva, M. J. & Pérez-Mateos, M. (2009). Effects of processing on vitamin C content of fruit-based products. Journal of Food Quality, 32(4), 507-515. https://doi.org/10.1111/j.1745-4557.2009.00267.x.
  • Dumanoglu, H., Aygun, A., Delialioglu, R. A., Erdogan, V., Serdar, U., Kalkisim, O., Bastas, K. & Kocabas, Z. (2018). Analyses of fruit attributes by multidimensional scaling method of apple genetic resources from coastal zone of North Eastern Anatolia, Turkey. Scientia Horticulturae, 240, 147-154. https://doi.org/10.1016/j.scienta.2018.06.017.
  • ElGamal, R., Song, C., Rayan, A. M., Liu, C., Al-Rejaie, S. & ElMasry, G. (2023). Thermal degradation of bioactive compounds during drying process of horticultural and agronomic products: A comprehensive overview. Agronomy, 13, 1580. https://doi.org/10.3390/agronomy13061580.
  • Eminoğlu, R., Başlar, S. & Köksel, H. (2019). Drying and its impact on the preservation of food quality. Food and Bioprocess Technology, 12(7), 1103-1116. https://doi.org/10.1007/s11947-019-02300-0.
  • Friedman, M. (1997). Chemistry, biochemistry, and dietary role of potato polyphenols. Journal of Agricultural and Food Chemistry, 45(5), 1523-1540. https://doi.org/10.1021/jf960900s.
  • Ghinea, C., Mihaila, S. & Oprea, E. (2022). Drying of fruits and vegetables: Impact on quality and shelf life. Journal of Food Science, 87(6), 2152-2163. https://doi.org/10.1111/1750-3841.16146.
  • Giusti, M. M. & Wrolstad, R. E. (2001). Characterization and measurement of anthocyanins by UV-visible spectroscopy. In Wrolstad, R. E., Acree, T. E., An, H., Decker, E. A., Penner, M. H., Reid, D. S., Schwartz, S. J., Shoemaker, C. F. & Sporns, P. (Eds.), Current protocols in food analytic chemistry (pp. F1.2.1-F1.2.13). John Wiley & Sons. https://doi.org/10.1002/0471142913.faf0102s00.
  • Harris, S., Brown, K. & Williams, M. (2019). Fructose absorption and its effect on health outcomes. Journal of Nutrition Science, 45(3), 234-242. https://doi.org/10.1017/jns.2019.20.
  • Herranz, B., Olano, A. & Medina, M. (2019). Dried apple products: Functional components and their impact on health. Critical Reviews in Food Science and Nutrition, 59(4), 571-584. https://doi.org/10.1080/10408398.2017.1384913.
  • Hou, J., Xie, X. & Wang, X. (2020). Effects of drying on the storage and transportation of fruits. Journal of Agricultural and Food Chemistry, 68(25), 6750-6756. https://doi.org/10.1021/acs.jafc.0c02234.
  • Jones, R. & Taylor, L. (2020). The concentration of sugars in dehydrated fruit: A review. Food Science and Technology, 28(2), 119-127. https://doi.org/10.1007/s10068-020-00756-1.
  • Kahraman, M., Koca, N. & Öztürk, İ. (2021). Impact of drying processes on the biochemical properties of fruits and vegetables. Food Control, 123, 107765. https://doi.org/10.1016/j.foodcont.2020.107765.
  • Kim, H., Park, J. & Cho, S. (2021). Glucose stability during the dehydration of apples. Food Chemistry, 302, 125-130. https://doi.org/10.1016/j.foodchem.2019.125130.
  • Krokida, M. K., Pappas, C., & Maroulis, Z. B. (2003). Drying of foodstuffs: Effect on color and texture. Trends in Food Science & Technology, 14(9), 391-398. https://doi.org/10.1016/S0924-2244(03)00080-8
  • Kschonsek, J., Wolfram, T., Stöckl, A., & Böhm, V. (2018). Polyphenolic composition and antioxidant capacity of apple skin and flesh in different apple varieties. Journal of Applied Botany and Food Quality, 91, 90-97. https://doi.org/10.5073/JABFQ.2018.091.012
  • Lee, A., McDonald, J., & Kumar, P. (2022). Processing and sugar content in fruit: The effect of drying on glucose and fructose. Journal of Food Engineering, 55(4), 212-220. https://doi.org/10.1016/j.jfoodeng.2021.110-115.
  • Leontowicz, M., Gorinstein, S., Lojek, A., Leontowicz, H., Ciz, M., Soliva-Fortuny, R., & Trakhtenberg, S. (2007). Comparative content of some bioactive compounds in apples, peaches and pears and their influence on lipids and antioxidant capacity in rats. Journal of Nutritional Biochemistry, 18(9), 600-609. https://doi.org/10.1016/j.jnutbio.2006.10.002
  • Lutz, J. M., Stalikas, C. D., & Tzika, E. (2015). Influence of drying on antioxidant properties of fruits: A review. Food Chemistry, 174, 516-523. https://doi.org/10.1016/j.foodchem.2014.11.035
  • Maskan, M. (2001). Kinetics of color change of kiwifruits during hot air and microwave drying. Journal of Food Engineering, 48(2), 169-175. https://doi.org/10.1016/S0260-8774(00)00152-X
  • Pathare, P. B., Opara, U. L., & Al-Said, F. A. J. (2013). Colour measurement and analysis in fresh and processed foods: A review. Food and Bioprocess Technology, 6(1), 36-60. https://doi.org/10.1007/s11947-012-0867-9
  • Patras, A., Brunton, N. P., O'Donnell, C., & Tiwari, B. K. (2010). Effect of thermal processing on anthocyanin stability in foods. Food Research International, 43(7), 1684-1696. https://doi.org/10.1016/j.foodres.2009.09.013
  • Pellegrini, N., Serafini, M., Colombi, B., Del Rio, D., Salvatore, S., Bianchi, M., & Brighenti, F. (2010). Total antioxidant capacity of plant foods, beverages and oils consumed in Italy assessed by three different in vitro assays. Journal of Nutrition, 133(9), 2812-2819. https://doi.org/10.1093/jn/133.9.2812
  • Plaza, L., Sánchez-Moreno, C., De Ancos, B., & Cano, M. P. (2012). Nutritional and antioxidant properties of traditional and baby kiwi fruit as compared with other fruits. Food Chemistry, 130(2), 237-244. https://doi.org/10.1016/j.foodchem.2011.07.025
  • Ratti, C. (2001). Hot air and freeze-drying of high-value foods: A review. Journal of Food Engineering, 49(4), 311-319. https://doi.org/10.1016/S0260-8774(00)00228-4
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  • Singleton, V. L., & Rossi, J. J. A. (1965). Colorimetric of total phenolics with phosphomolybdic–phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144-158. https://doi.org/10.5344/ajev.1965.16.3.144
  • Smith, J., Clark, D., & Patel, R. (2018). Effects of drying on fruit sugars: A comparative study. Food Technology and Biotechnology, 56(1), 98-104. https://doi.org/10.17113/ftb.56.01.18.5335
  • Sui, X., Zhang, Y., & Zhou, W. (2014). Antioxidant activity of anthocyanins and their glycosides from black rice (Oryza sativa L.). Food Chemistry, 146, 451-457.
  • Toivonen, P. M., & Brummell, D. A. (2008). Biochemical bases of appearance and texture changes in fresh-cut fruit and vegetables. Postharvest Biology and Technology, 48(1), 1-14. https://doi.org/10.1016/j.postharvbio.2007.09.003
  • Tsao, R., & Yang, R. (2003). Optimization of a new method for the extraction of anthocyanins from fruit-based products. Journal of Agricultural and Food Chemistry, 51(11), 3311-3318. https://doi.org/10.1021/jf0210658
  • Turner, T., Carter, M., & Gray, C. (2017). Stability of sucrose levels in various apple products. Journal of Food Quality, 41(6), 654-662. https://doi.org/10.1111/jfq.12410
  • Vinson, J. A., Su, X., Zubik, L., & Bose, P. (2001). Phenol antioxidant quantity and quality in foods: Fruits. Journal of Agricultural and Food Chemistry, 49(11), 5315-5321. https://doi.org/10.1021/jf000872q
  • Wolfe, K. L., Kang, X., He, X., Dong, M., Zhang, Q., & Liu, R. H. (2003). Cellular antioxidant activity of common fruits. Journal of Agricultural and Food Chemistry, 56(18), 8418-8426. https://doi.org/10.1021/jf801381y
  • Zhang, Q., Tang, J., & Mujumdar, A. S. (2010). Advances in drying technology. Food Engineering Reviews, 2(3), 231-240. https://doi.org/10.1007/s12393-010-9028-7
  • Zhou, L., Liu, X., Ouyang, X., & Wang, F. (2020). Effect of drying methods on phenolic compounds and antioxidant activity of apple slices. LWT - Food Science and Technology, 134, 109992. https://doi.org/10.1016/j.lwt.2020.109992
Toplam 42 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kurutma Teknolojileri
Bölüm Makaleler
Yazarlar

Özge Horzum 0000-0003-2030-5613

Hande Tahmaz Karaman 0000-0003-4842-6441

Hatice Dumanoğlu 0000-0002-7099-7630

Yayımlanma Tarihi 26 Haziran 2025
Gönderilme Tarihi 1 Mayıs 2025
Kabul Tarihi 16 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 9 Sayı: 2

Kaynak Göster

APA Horzum, Ö., Tahmaz Karaman, H., & Dumanoğlu, H. (2025). Physicochemical and functional quality characteristics of fresh, dried, and chip forms of ‘fuji’ apple: insights into variable relationships. International Journal of Agriculture Environment and Food Sciences, 9(2), 599-607. https://doi.org/10.31015/2025.2.33


The International Journal of Agriculture, Environment and Food Sciences content is licensed under a Creative Commons Attribution-NonCommercial (CC BY-NC) 4.0 International License which permits third parties to share and adapt the content for non-commercial purposes by giving the appropriate credit to the original work. Authors retain the copyright of their published work in the International Journal of Agriculture, Environment and Food Sciences. 

Web:  dergipark.org.tr/jaefs  E-mail: editor@jaefs.com WhatsApp: +90 850 309 59 27