Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2025, Cilt: 9 Sayı: 2, 608 - 616, 26.06.2025
https://doi.org/10.31015/2025.2.34

Öz

Kaynakça

  • Ahmad, P., Jaleel, C.A., Salem, M.A., Nabi, G., & Sharma, S. (2010). Roles of Enzymatic and Nonenzymatic Antioxidants in Plants During Abiotic Stress. Critical Reviews in Biotechnology, 30(3), 161-175. https://doi.org/10.3109/07388550903524243
  • Ahmadi, T., Shabani, L., Sabzalian, M.R., (2019). Improvement in Drought Tolerance of Lemon Balm, Melissa Officinalis L. under The Pre-Treatment of LED Lighting. Plant Physiology and Biochemistry. 139,548-557. https://doi.org/10.1016/j.plaphy.2019.04.021.
  • Arriaga, A.I.M., Granados, C.E.E., Tavera, V.M., Diaz, G.M., Ruiz, J.H., Nieto, J.E.R., (2020). Antioxidant response of lettuce plants to four wavelengths of LED visible light. Acta Physiologia Plantarum. 42,172. https://doi.org/10.1007/s11738-020-03161-6
  • Attia, H., Karray, N., Lachaâl, M. (2009). Light interacts with salt stress in regulating superoxide dismutase gene expression in Arabidopsis. Plant Science, 177(3),161-167. ttps://doi.org/10.1016/j.plantsci.2009.05.002.
  • Brown, P. D., Tokuhisa, J. G., Reichelt, M.,Gershenzon, J., (2003). Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana. Phytochemistry. 62,471-481. https://doi.org/10.1016/S0031-9422(02)00549-6
  • Cao, K., Yu, J., Xu, D., Ai, K., Bao, E., Zou, Z. (2018). Exposure to lower red to far-red light ratios improve tomato tolerance to salt stress. BMC Plant Biology, 18,92. https://doi.org/10.1186/s12870-018-1310-9
  • Davenport, R., James, R.A., Zakrisson-Plogander, A., Tester, M., & Munns, R. (2005). Control of sodium transport in durum wheat. Plant Physiology, 137(3), 807-818. https://doi.org/10.1104/pp.104.057307
  • Demir, K., Sarıkamış, G., & Çakırer Seyrek, G. (2023). Effect of LED lights on the growth, nutritional quality and glucosinolate content of broccoli, cabbage and radish microgreens. Food Chemistry, 401,134088. https://doi.org/10.1016/j.foodchem.2022.134088
  • El-Esawi, M., Arthaut, LD., Jourdan, N., Harlingue, A., Link, J., Martino, C.F., Ahmad, M. (2017). Blue-light induced biosynthesis of ROS contributes to the signaling mechanism of Arabidopsis cryptochrome. Scientific Reports 7, 13875. https://doi.org/10.1038/s41598-017-13832-z.
  • Gill,S.S., Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants.Plant Physiology and Biochemistry, 48(12), 909-930. https://doi.org/10.1016/j.plaphy.2010.08.016.
  • Giuffrida, F., Cassaniti, C., Malvuccio, A., Leonardi, C. (2017). Effects of salt stress imposed during two growth phases on cauliflower production and quality. Journal of the Science of Food and Agriculture, 97(5),1552-1560. https://doi.org/10.1002/jsfa.7900.
  • Hogewoning, S.W., Trouwborst, G., Maljaars, H., Poorter, H., Van Ieperen, W., Harbinson, J. (2010). Blue light dose–responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. Journal of Experimental Botany 61,3107-3117. https://doi.org/10.1093/jxb/erq132
  • Hogewoning, S.W., Wientjes, E., Douwstra, P., Trouwborst, G., Van Ieperen, W., Croce, R., Harbinson, J., (2012). Photosynthetic quantum yield dynamics: from photosystems to leaves. Plant Cell. 24(5),1921-35. https://doi.org/10.1105/tpc.112.097972.
  • Huang, H., Ullah, F., Zhou, D.X., Yi, M., Zhao, Y. (2019). Mechanisms of ROS Regulation of Plant Development and Stress Responses. Frontiers in Plant Science, 10:800. https://doi.org/10.3389/fpls.2019.00800
  • Izzio, L,G., Mickens, M.A., Aronne, G., Gómez, C. (2021). Spectral effects of blue and red light on growth, anatomy, and physiology of lettuce. Physiologia Plantarum, 172(4):2191-2202. https://doi.org/10.1111/ppl.13395
  • Jebara, S., Jebara, M., Liman, F., Aouani, E., (2005). Changes in ascorbate peroxidase. Catalase, guaicol peroxidase and superoxide dismutase activities in common bean (Phaseolus vulgaris) nodules under salt stress. Journal of Plant Physiology. 162, 929-936. https://doi.org/10.1016/j.jplph.2004.10.005.
  • Kesawat, M.S., Satheesh, N., Kherawat, B.S., Kumar, A., Kim, H.U., Chung, S.M., Kumar, M. (2023). Regulation of Reactive Oxygen Species during Salt Stress in Plants and Their Crosstalk with Other Signaling Molecules-Current Perspectives and Future Directions. Plants (Basel). 12(4),864. https://doi.org/10.3390/plants12040864
  • Kim, S. Y., Lim, J. H., Park, M. R., Kim, Y. J., Park, T. I., Seo, Y.W, Choi, K.G., Yun, S. J. (2005). Enhanced antioxidant enzymes are associated with reduced hydrogen peroxide in barley roots under saline stress. Journal of Biochemistry and Molecular Biology, 38(2), 218-224.
  • Kim, Y.X., Stumpf, B., Sung, J., & Lee, S.J. (2018). The Relationship between Turgor Pressure Change and Cell Hydraulics of Midrib Parenchyma Cells in the Leaves of Zea mays. Cells, 7(10), 180. https://doi.org/10.3390/cells7100180
  • Kuşvuran, Ş., Kaya, E., Ellialtıoğlu, Ş.Ş. (2021). Role of grafting in tolerance to salt stress in melon (Cucumis melo L.) plants: ion regulation and antioxidant defense systems. Biotech Studies, 30 (1), 22-32.
  • Li, Y., Xin, G., Liu, C., Shi, Q., Yang, F., Wei, M. (2020). Effects of red and blue light on leaf anatomy, CO2 assimilation and the photosynthetic electron transport capacity of sweet pepper (Capsicum annuum L.) seedlings. BMC Plant Biology, 6;20(1):318. https://doi.org/10.1186/s12870-020-02523-z
  • Ma, L., Zhang, H., Sun, L., Jiao, Y., Zhang, G., Miao, C., Hao, F. (2012). NADPH oxidase AtrbohD and AtrbohF function in ROS-dependent regulation of Na⁺/K⁺homeostasis in Arabidopsis under salt stress. Journal of Experimental Botany, 63(1),305-317. https://doi.org/10.1093/jxb/err280.
  • Martinez-Ballesta, M., Moreno-Fernández, D.A., & Carvajal, M. (2013). The Physiological Importance of Glucosinolates on Plant Response to Abiotic Stress in Brassica. International Journal of Molecular Sciences, 14, 11607-11625. https://doi.org/10.3390/ijms140611607
  • Martinez-Ballesta, M., Moreno-Fernández, D.A., Castejón, D., Ochando, C., Morandini, P.A., & Carvajal, M. (2015). The impact of the absence of aliphatic glucosinolates on water transport under salt stress in Arabidopsis thaliana. Frontiers in Plant Science, 6, 524. https://doi.org/10.3389/fpls.2015.00524
  • Mukherjee, S.P., Choudhuri, M.A. (1983). Implications of water stressinduced changes in the leaves of endogenous ascorbic acid and hydrogen peroxide in vigna seedlings. Physiologia Plantarum, 58,166–170. https://doi.org/10.1111/j.1399-3054.1983.tb04162.x.
  • Nakano, Y., Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiology, 22,867-880. https://doi.org/10.1093/oxfordjournals.pcp.a076232.
  • Pang, Q., Guo, J., Chen, S., Chen, Y., Zhang, L., Fei, M., Jin, S., Li, M., Wang, Y., & Yan, X. (2012). Effect of salt treatment on the glucosinolate-myrosinase system in Thellungiella salsuginea. Plant and Soil 355(1-2), 363-374. https://doi.org/10.1007/s11104-011-1108-0
  • Pattaro, M., Falcioni, R., Moriwaki, T., Alves, D., Antunes, W. (2024). Blue light strongly promotes de-etiolation over green, moderate over red, but have limited action over far-red lights in lettuce plants. Scientia Horticulturae, 328,112863. https://doi.org/10.1016/j.scienta.2024.112863.
  • Rahnama, H., Ebrahimzadeh, H., (2005). The effect of NaCl on antioxidant enzyme activities in potato seedlings. Biologia Plantarum. 49, 93-97. https://doi.org/10.1007/s10535-005-3097-4.
  • Rafeie, M., Shabani, L., Sabzalian, M.R., Gharibi, S. (2022). Pretreatment with LEDs Regulates Antioxidant Capacity and Polyphenolic Profile in Two Genotypes of Basil under Salinity Stress. Protoplasma, 259,1567-1583. https://doi.org/10.1007/s00709-022-01746-1.
  • Sarıkamış, G., Marquez, J., MacCormack, R., Bennett, R.N., Roberts, J., & Mithen, R. (2006). High glucosinolate broccoli: a delivery system for sulforaphane. Molecular Breeding, 18,219-228. https://doi.org/10.1007/s11032-006-9029-y
  • Sarıkamış, G. & Çakır, A. (2017). Influence of salinity on aliphatic and indole glucosinolates in broccoli (Brassica oleracea var. Italica). Applied Ecology and Environmental Research, 15(3),1781-1788. http://dx.doi.org/10.15666/aeer/1503_17811788
  • Shibuya, T., Nagata, A., Endo, R. (2024). Far-red light interacts with salinity stress in Cucumis sativus seedlings partly through changes in photosynthate allocation. Plant Growth Regulation, 102,91–97. https://doi.org/10.1007/s10725-023-00978-2
  • Tang, W., Guo, H., Baskin, C.C., Xiong, W., Yang, C., Li, Z., Song, H., Wang, T., Yin, J., Wu, X., Miao, F., Zhong, S., Tao, Q., Zhao, Y., Sun, J. (2022). Effect of Light Intensity on Morphology, Photosynthesis and Carbon Metabolism of Alfalfa (Medicago sativa) Seedlings. Plants (Basel). 11(13),1688. https://doi.org/10.3390/plants11131688.
  • Toscano, S., Cavallaro, V., Ferrante, A., Romano, D., Patané, C. (2021). Effects of Different Light Spectra on Final Biomass Production and Nutritional Quality of Two Microgreens. Plants, 10(8), 1584. https://doi.org/10.3390/plants10081584.
  • Van Zelm, E., Zhang, Y., Testerink, C. (2020). Salt Tolerance Mechanisms of Plants. Annual Review of Plant Biology, 71,403-433. https://doi.org/10.1146/annurev-arplant-050718-100005.
  • Yuan, G., Wang, X., Guo, R., & Wang, Q. (2010). Effect of salt stress on phenolic compounds, glucosinolates, myrosinase and antioxidant activity in radish sprouts. Food Chemistry, 121(4),1014-1019. https://doi.org/10.1016/j.foodchem.2010.01.040
  • Zhou, H., Shi, H., Yang, Y., Feng, X., Chen, X., Xiao, F., Lin, H., & Guo, Y. (2024). Insights into plant salt stress signaling and tolerance. Journal of Genetics and Genomics, 51(1),16-34. https://doi.org/10.1016/j.jgg.2023.08.007

Salt stress response of cauliflower (Brassica oleracea var. botrytis) seedlings under different LED light wavelengths

Yıl 2025, Cilt: 9 Sayı: 2, 608 - 616, 26.06.2025
https://doi.org/10.31015/2025.2.34

Öz

Cauliflower is one of the major brassica vegetables that receive attention due to the presence of glucosinolates that are known to have health benefits. These metabolites are a part of plant defence system and influenced under stress conditions. Light Emitting Diodes (LED) are gaining interest as to provide artificial light at different wavelengths that modulate morphological, physiological and biochemical responses of plants. The objective of the present study was to explore salt stress response of cauliflower (Brassica oleracea var. botrytis) seedlings that are grown under different LED light wavelengths in terms of morphological parameters, antioxidant enzyme activities and glucosinolate contents. The seedlings were treated with 200 mM NaCl to generate salt stress or without NaCl as the control and were grown under different LED light wavelengths including red, blue, red+blue, red+far red, blue+far red and white (control) lights. Shoot and root growth parameters, antioxidant enzymes activity (CAT, SOD, APX), H2O2 content, aliphatic and indole glucosinolates were determined. The findings revealed that salt and light treatments independently influenced shoot and root growth. The antioxidant enzymes CAT and APX activities were highest in the control plants of blue and blue+far red lights whereas SOD activity was highest in salt treated plants under blue light. Aliphatic and indole glucosinolate content varied among LED light treatments. Salt treatment decreased the aliphatics while indoles particularly the glucobrassisin was increased with the influence of salinity and light wavelengths. The results demonstrated the salt stress response of cauliflower seedlings by elucidating changes in the antioxidant enzymes, glucosinolate contents, major shoot and root growth parameters under a range of different light wavelengths. These findings may provide a comprehensive understanding of the influence of different light wavelengths in mediating plant stress response.

Kaynakça

  • Ahmad, P., Jaleel, C.A., Salem, M.A., Nabi, G., & Sharma, S. (2010). Roles of Enzymatic and Nonenzymatic Antioxidants in Plants During Abiotic Stress. Critical Reviews in Biotechnology, 30(3), 161-175. https://doi.org/10.3109/07388550903524243
  • Ahmadi, T., Shabani, L., Sabzalian, M.R., (2019). Improvement in Drought Tolerance of Lemon Balm, Melissa Officinalis L. under The Pre-Treatment of LED Lighting. Plant Physiology and Biochemistry. 139,548-557. https://doi.org/10.1016/j.plaphy.2019.04.021.
  • Arriaga, A.I.M., Granados, C.E.E., Tavera, V.M., Diaz, G.M., Ruiz, J.H., Nieto, J.E.R., (2020). Antioxidant response of lettuce plants to four wavelengths of LED visible light. Acta Physiologia Plantarum. 42,172. https://doi.org/10.1007/s11738-020-03161-6
  • Attia, H., Karray, N., Lachaâl, M. (2009). Light interacts with salt stress in regulating superoxide dismutase gene expression in Arabidopsis. Plant Science, 177(3),161-167. ttps://doi.org/10.1016/j.plantsci.2009.05.002.
  • Brown, P. D., Tokuhisa, J. G., Reichelt, M.,Gershenzon, J., (2003). Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana. Phytochemistry. 62,471-481. https://doi.org/10.1016/S0031-9422(02)00549-6
  • Cao, K., Yu, J., Xu, D., Ai, K., Bao, E., Zou, Z. (2018). Exposure to lower red to far-red light ratios improve tomato tolerance to salt stress. BMC Plant Biology, 18,92. https://doi.org/10.1186/s12870-018-1310-9
  • Davenport, R., James, R.A., Zakrisson-Plogander, A., Tester, M., & Munns, R. (2005). Control of sodium transport in durum wheat. Plant Physiology, 137(3), 807-818. https://doi.org/10.1104/pp.104.057307
  • Demir, K., Sarıkamış, G., & Çakırer Seyrek, G. (2023). Effect of LED lights on the growth, nutritional quality and glucosinolate content of broccoli, cabbage and radish microgreens. Food Chemistry, 401,134088. https://doi.org/10.1016/j.foodchem.2022.134088
  • El-Esawi, M., Arthaut, LD., Jourdan, N., Harlingue, A., Link, J., Martino, C.F., Ahmad, M. (2017). Blue-light induced biosynthesis of ROS contributes to the signaling mechanism of Arabidopsis cryptochrome. Scientific Reports 7, 13875. https://doi.org/10.1038/s41598-017-13832-z.
  • Gill,S.S., Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants.Plant Physiology and Biochemistry, 48(12), 909-930. https://doi.org/10.1016/j.plaphy.2010.08.016.
  • Giuffrida, F., Cassaniti, C., Malvuccio, A., Leonardi, C. (2017). Effects of salt stress imposed during two growth phases on cauliflower production and quality. Journal of the Science of Food and Agriculture, 97(5),1552-1560. https://doi.org/10.1002/jsfa.7900.
  • Hogewoning, S.W., Trouwborst, G., Maljaars, H., Poorter, H., Van Ieperen, W., Harbinson, J. (2010). Blue light dose–responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. Journal of Experimental Botany 61,3107-3117. https://doi.org/10.1093/jxb/erq132
  • Hogewoning, S.W., Wientjes, E., Douwstra, P., Trouwborst, G., Van Ieperen, W., Croce, R., Harbinson, J., (2012). Photosynthetic quantum yield dynamics: from photosystems to leaves. Plant Cell. 24(5),1921-35. https://doi.org/10.1105/tpc.112.097972.
  • Huang, H., Ullah, F., Zhou, D.X., Yi, M., Zhao, Y. (2019). Mechanisms of ROS Regulation of Plant Development and Stress Responses. Frontiers in Plant Science, 10:800. https://doi.org/10.3389/fpls.2019.00800
  • Izzio, L,G., Mickens, M.A., Aronne, G., Gómez, C. (2021). Spectral effects of blue and red light on growth, anatomy, and physiology of lettuce. Physiologia Plantarum, 172(4):2191-2202. https://doi.org/10.1111/ppl.13395
  • Jebara, S., Jebara, M., Liman, F., Aouani, E., (2005). Changes in ascorbate peroxidase. Catalase, guaicol peroxidase and superoxide dismutase activities in common bean (Phaseolus vulgaris) nodules under salt stress. Journal of Plant Physiology. 162, 929-936. https://doi.org/10.1016/j.jplph.2004.10.005.
  • Kesawat, M.S., Satheesh, N., Kherawat, B.S., Kumar, A., Kim, H.U., Chung, S.M., Kumar, M. (2023). Regulation of Reactive Oxygen Species during Salt Stress in Plants and Their Crosstalk with Other Signaling Molecules-Current Perspectives and Future Directions. Plants (Basel). 12(4),864. https://doi.org/10.3390/plants12040864
  • Kim, S. Y., Lim, J. H., Park, M. R., Kim, Y. J., Park, T. I., Seo, Y.W, Choi, K.G., Yun, S. J. (2005). Enhanced antioxidant enzymes are associated with reduced hydrogen peroxide in barley roots under saline stress. Journal of Biochemistry and Molecular Biology, 38(2), 218-224.
  • Kim, Y.X., Stumpf, B., Sung, J., & Lee, S.J. (2018). The Relationship between Turgor Pressure Change and Cell Hydraulics of Midrib Parenchyma Cells in the Leaves of Zea mays. Cells, 7(10), 180. https://doi.org/10.3390/cells7100180
  • Kuşvuran, Ş., Kaya, E., Ellialtıoğlu, Ş.Ş. (2021). Role of grafting in tolerance to salt stress in melon (Cucumis melo L.) plants: ion regulation and antioxidant defense systems. Biotech Studies, 30 (1), 22-32.
  • Li, Y., Xin, G., Liu, C., Shi, Q., Yang, F., Wei, M. (2020). Effects of red and blue light on leaf anatomy, CO2 assimilation and the photosynthetic electron transport capacity of sweet pepper (Capsicum annuum L.) seedlings. BMC Plant Biology, 6;20(1):318. https://doi.org/10.1186/s12870-020-02523-z
  • Ma, L., Zhang, H., Sun, L., Jiao, Y., Zhang, G., Miao, C., Hao, F. (2012). NADPH oxidase AtrbohD and AtrbohF function in ROS-dependent regulation of Na⁺/K⁺homeostasis in Arabidopsis under salt stress. Journal of Experimental Botany, 63(1),305-317. https://doi.org/10.1093/jxb/err280.
  • Martinez-Ballesta, M., Moreno-Fernández, D.A., & Carvajal, M. (2013). The Physiological Importance of Glucosinolates on Plant Response to Abiotic Stress in Brassica. International Journal of Molecular Sciences, 14, 11607-11625. https://doi.org/10.3390/ijms140611607
  • Martinez-Ballesta, M., Moreno-Fernández, D.A., Castejón, D., Ochando, C., Morandini, P.A., & Carvajal, M. (2015). The impact of the absence of aliphatic glucosinolates on water transport under salt stress in Arabidopsis thaliana. Frontiers in Plant Science, 6, 524. https://doi.org/10.3389/fpls.2015.00524
  • Mukherjee, S.P., Choudhuri, M.A. (1983). Implications of water stressinduced changes in the leaves of endogenous ascorbic acid and hydrogen peroxide in vigna seedlings. Physiologia Plantarum, 58,166–170. https://doi.org/10.1111/j.1399-3054.1983.tb04162.x.
  • Nakano, Y., Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiology, 22,867-880. https://doi.org/10.1093/oxfordjournals.pcp.a076232.
  • Pang, Q., Guo, J., Chen, S., Chen, Y., Zhang, L., Fei, M., Jin, S., Li, M., Wang, Y., & Yan, X. (2012). Effect of salt treatment on the glucosinolate-myrosinase system in Thellungiella salsuginea. Plant and Soil 355(1-2), 363-374. https://doi.org/10.1007/s11104-011-1108-0
  • Pattaro, M., Falcioni, R., Moriwaki, T., Alves, D., Antunes, W. (2024). Blue light strongly promotes de-etiolation over green, moderate over red, but have limited action over far-red lights in lettuce plants. Scientia Horticulturae, 328,112863. https://doi.org/10.1016/j.scienta.2024.112863.
  • Rahnama, H., Ebrahimzadeh, H., (2005). The effect of NaCl on antioxidant enzyme activities in potato seedlings. Biologia Plantarum. 49, 93-97. https://doi.org/10.1007/s10535-005-3097-4.
  • Rafeie, M., Shabani, L., Sabzalian, M.R., Gharibi, S. (2022). Pretreatment with LEDs Regulates Antioxidant Capacity and Polyphenolic Profile in Two Genotypes of Basil under Salinity Stress. Protoplasma, 259,1567-1583. https://doi.org/10.1007/s00709-022-01746-1.
  • Sarıkamış, G., Marquez, J., MacCormack, R., Bennett, R.N., Roberts, J., & Mithen, R. (2006). High glucosinolate broccoli: a delivery system for sulforaphane. Molecular Breeding, 18,219-228. https://doi.org/10.1007/s11032-006-9029-y
  • Sarıkamış, G. & Çakır, A. (2017). Influence of salinity on aliphatic and indole glucosinolates in broccoli (Brassica oleracea var. Italica). Applied Ecology and Environmental Research, 15(3),1781-1788. http://dx.doi.org/10.15666/aeer/1503_17811788
  • Shibuya, T., Nagata, A., Endo, R. (2024). Far-red light interacts with salinity stress in Cucumis sativus seedlings partly through changes in photosynthate allocation. Plant Growth Regulation, 102,91–97. https://doi.org/10.1007/s10725-023-00978-2
  • Tang, W., Guo, H., Baskin, C.C., Xiong, W., Yang, C., Li, Z., Song, H., Wang, T., Yin, J., Wu, X., Miao, F., Zhong, S., Tao, Q., Zhao, Y., Sun, J. (2022). Effect of Light Intensity on Morphology, Photosynthesis and Carbon Metabolism of Alfalfa (Medicago sativa) Seedlings. Plants (Basel). 11(13),1688. https://doi.org/10.3390/plants11131688.
  • Toscano, S., Cavallaro, V., Ferrante, A., Romano, D., Patané, C. (2021). Effects of Different Light Spectra on Final Biomass Production and Nutritional Quality of Two Microgreens. Plants, 10(8), 1584. https://doi.org/10.3390/plants10081584.
  • Van Zelm, E., Zhang, Y., Testerink, C. (2020). Salt Tolerance Mechanisms of Plants. Annual Review of Plant Biology, 71,403-433. https://doi.org/10.1146/annurev-arplant-050718-100005.
  • Yuan, G., Wang, X., Guo, R., & Wang, Q. (2010). Effect of salt stress on phenolic compounds, glucosinolates, myrosinase and antioxidant activity in radish sprouts. Food Chemistry, 121(4),1014-1019. https://doi.org/10.1016/j.foodchem.2010.01.040
  • Zhou, H., Shi, H., Yang, Y., Feng, X., Chen, X., Xiao, F., Lin, H., & Guo, Y. (2024). Insights into plant salt stress signaling and tolerance. Journal of Genetics and Genomics, 51(1),16-34. https://doi.org/10.1016/j.jgg.2023.08.007
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sebze Yetiştirme ve Islahı
Bölüm Makaleler
Yazarlar

Ayça Kodal 0000-0001-9258-7037

Gölge Sarıkamış 0000-0003-0645-9464

Özge Şahin 0000-0003-3593-4594

Köksal Demir 0000-0001-6120-7249

Yayımlanma Tarihi 26 Haziran 2025
Gönderilme Tarihi 10 Mayıs 2025
Kabul Tarihi 23 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 9 Sayı: 2

Kaynak Göster

APA Kodal, A., Sarıkamış, G., Şahin, Ö., Demir, K. (2025). Salt stress response of cauliflower (Brassica oleracea var. botrytis) seedlings under different LED light wavelengths. International Journal of Agriculture Environment and Food Sciences, 9(2), 608-616. https://doi.org/10.31015/2025.2.34


The International Journal of Agriculture, Environment and Food Sciences content is licensed under a Creative Commons Attribution-NonCommercial (CC BY-NC) 4.0 International License which permits third parties to share and adapt the content for non-commercial purposes by giving the appropriate credit to the original work. Authors retain the copyright of their published work in the International Journal of Agriculture, Environment and Food Sciences. 

Web:  dergipark.org.tr/jaefs  E-mail: editor@jaefs.com WhatsApp: +90 850 309 59 27